Laser photodissociation of the isotopic hydrogen molecular ions. Comparison between experimental and ab initio computed fragment kinetic energy spectra

1976 ◽  
Vol 16 (1) ◽  
pp. 75-80 ◽  
Author(s):  
J.-B. Ozenne ◽  
J. Durup ◽  
R.W. Odom ◽  
C. Pernot ◽  
A. Tabché-Fouhaillé ◽  
...  
1993 ◽  
Vol 46 (6) ◽  
pp. 895 ◽  
Author(s):  
T Blumenthal ◽  
M Dosen ◽  
RG Gillis ◽  
QN Porter

Under electron ionization conditions, the ortho-substituted Schiff bases N-benzylidene-o-toluidine (1a), N-(o-methylbenzylidene)aniline (1b), N-salicylideneaniline (1c) and N-(o-methoxybenzylidene)aniline (1d) give fragment ions which have been shown by collision-activated mass-analysed ion kinetic energy spectra to have the structure of the protonated molecular ions of indole (2), benzofuran (3), and 1,2-benzisoxazole (4). The molecular ion of N-(o-methylbenzylidene)-o-toluidine (1f) gives as fragment ions not only the protonated molecular ion (2) of indole and the tropylium ion but also the molecular ion of anthracene. Attempts to find supporting evidence for a mechanism for this rearrangement by deuterium labelling of a methyl group in (1b), such as (1g), have been unsuccessful.


1971 ◽  
Vol 49 (22) ◽  
pp. 2778-2784 ◽  
Author(s):  
P. B. Vitta

The statistical theory of nuclear fission was originally developed to deal with binary fission. An attempt is made to extend the theory to the case of ternary fission. The probability of a fission mode, given that the nucleus divides into three fragments, is first calculated. Attention is thereafter focused only on the probability distribution of fission modes representing the various possible allocations to the fragment translational motion and internal excitation of the energy available for both translation and excitation. This leads to ternary-fission distributions of the initial kinetic energy (and to complementary distributions of the initial excitation energy) of the fissioning nucleus. Our results show that the ternary-fission distributions of the initial kinetic energy are wider with peaks at higher values of kinetic energy than the corresponding binary-fission distributions obtained previously. The (spontaneous-) ternary-fission distributions are peaked at energies of the order of 1 MeV and have full-widths-at-half-maximum (FWHM) in the neighborhood of 3 MeV. These figures are of experimental interest, since they may be used to predict the energy spectra of the fission fragments in ternary fission.


Tellus ◽  
1981 ◽  
Vol 33 (1) ◽  
pp. 102-104 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Joseph J. Tribbia

2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


1982 ◽  
Vol 1 (1) ◽  
pp. 37-43 ◽  
Author(s):  
V. S. Antonov ◽  
V. S. Letokhov ◽  
Yu. A. Matveyets ◽  
A. N. Shibanov

This paper presents the results of observation of sputtering of neutral molecules and ions from the crystal adenine surface induced by fourth-harmonic Nd:YAG laser radiation with a pulse duration of 30 ps. The energy fluence of laser pulses was in the region (1–3) × 10−4 J/cm2. The kinetic energy distribution of the sputtered molecules spreads up to 0.7 eV. The experiment shows that the threshold of adenine molecular ion sputtering is connected with absorbed energy density in upper layers of the crystal surface but not by laser radiation intensity.


2002 ◽  
Vol 09 (01) ◽  
pp. 153-158 ◽  
Author(s):  
WEIDONG ZHOU ◽  
D. P. SECCOMBE ◽  
R. Y. L. CHIM ◽  
R. P. TUCKETT

Threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has been used to investigate the decay dynamics of the valence electronic states of the parent cation of several hydrofluorocarbons (HFC), based on fluorine-substituted ethane, in the energy range 11–25 eV. We present data for CF 3– CHF 2, CF 3– CH 2 F , CF 3– CH 3 and CHF 2– CH 3. The threshold photoelectron spectra (TPES) of these molecules show a common feature of a broad, relatively weak ground state, associated with electron removal from the highest-occupied molecular orbital (HOMO) having mainly C–C σ-bonding character. Adiabatic and vertical ionisation energies for the HOMO of the four HFCs are presented, together with corresponding values from ab initio calculations. For those lower-energy molecular orbitals associated with non-bonding fluorine 2pπ lone pair electrons, these electronic states of the HFC cation decay impulsively by C–F bond fission with considerable release of translational kinetic energy. Appearance energies are presented for formation of the daughter cation formed by such a process (e.g. CF 3– CHF +), together with ab initio energies of the corresponding dissociation channel (e.g. CF 3– CHF + + F ). Values for the translational kinetic energy released are compared with the predictions of a pure-impulsive model.


2010 ◽  
Vol 132 (10) ◽  
pp. 104307 ◽  
Author(s):  
Bruno Concina ◽  
Bruno Baguenard ◽  
Florent Calvo ◽  
Christian Bordas

Sign in / Sign up

Export Citation Format

Share Document