Inclusion of 4,4'-Bipyridine (γbpy) in Its Copper(II) Aqua Perchlorato Complex. Crystal Structure of [Cu( γbpy )(H2O)2(ClO4)2]n.( γbpy )n

1996 ◽  
Vol 49 (7) ◽  
pp. 835 ◽  
Author(s):  
XM Chen ◽  
ML Tong ◽  
YJ Luo ◽  
ZN Chen

An example of a 4,4'-bipyridine ( γbpy ) clathrate in its copper(II) complex has been established. The compound, [Cu( γbpy )(H2O)2(ClO4)2]n.( γbpy )n, crystallizes in the monoclinic space group C2/c with a 16.651(3), b 11.089(2), c 14.360(3) Ǻ, β 116.45(3)°, V 2373.9(8)Ǻ3. The crystal structure comprises γbpy -bridged linear polymeric [Cu( γbpy )(H2O)2(ClO4)2]n chains, where the copper atom, located on a crystallographic twofold axis, is coordinated in an elongated octahedral environment by two nitrogen atoms of the bridging γbpy ligands (Cu-N 1.998(4)Ǻ) and two water molecules (Cu-O 1.968(3)Ǻ) at the equatorial positions, and two perchlorate oxygen atoms at the axial positions (Cu-O 2.414(4)Ǻ). The chains are interconnected by hydrogen bonds between the aqua ligands and the uncoordinated perchlorate oxygen atoms to form two-dimensional layers with cavities each enclosing a γbpy molecule. Hydrogen bonding between the aqua ligands and the nitrogen atoms of the solvate γbpy molecules further extends the structure into a three-dimensional network in the solid.

2006 ◽  
Vol 62 (7) ◽  
pp. m1479-m1481 ◽  
Author(s):  
Yu-Hong Ma ◽  
Pi-Zhuang Ma ◽  
Huan-Qin Zhu ◽  
Chang-Cheng Liu

The title complex, [Co(C2N3)2(C7H6N4)2(H2O)2] or [Co(dca)2(pytrz)2(H2O)2], where pytrz is 4-(2-pyridyl)-4H-1,2,4-triazole and dca is the dicyanamide monoanion, was prepared using pytrz, Na(dca) and CoCl2·6H2O. The CoII atom lies on a center of inversion and is coordinated in a slightly distorted octahderal geometry by two pytrz ligands, two dca ligands and two trans-oriented water molecules. In the crystal structure, complex molecules are linked by O—H...N hydrogen bonds into a two-dimensional network and further into a three-dimensional network via weak C—H...N hydrogen bonds.


2019 ◽  
Vol 75 (8) ◽  
pp. 1185-1189
Author(s):  
Kostiantyn V. Domasevitch ◽  
Andrey B. Lysenko

The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O} n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic space group P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3 N 1:N 2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N 1:N 2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxylate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3 O 1:O 2:O 3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water molecules are linked together by numerous O—H...O and C—H...O hydrogen bonds, leading to a three-dimensional structure.


1971 ◽  
Vol 49 (3) ◽  
pp. 468-476 ◽  
Author(s):  
Lilian Y. Y. Chan ◽  
F. W. B. Einstein

The crystal structure of potassium hydrogen di-iodate (bi-iodate) KIO3.HIO3 was determined from three dimensional X-ray data collected by counter methods. The structure was refined by full-matrix least-squares techniques to a conventional R factor of 5.0 % for the 1392 observed reflexions. The salt crystallizes in the monoclinic space group P21/c with eight formula units in a cell of dimension a = 7.028(1) Å, b = 8.203(1) Å, c = 21.841(3) Å, β = 98.03(1)°.The iodate units are all basically pyramidal; weak interionic I—O contacts complete a very distorted octahedral environment around three iodine atoms. There is a capped octahedral (7-coordinate) environment around the remaining iodine atom. The I—O bonds are in the range 1.75–1.82 Å and the I—OH bonds are 1.91 and 1.95 Å, variations in length can be correlated with differences in the degree of involvement in (a) hydrogen bonding and (b) interaction with adjacent iodine atoms.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Antoine Blaise Kama ◽  
Mamadou Sidibe ◽  
Cheikh Abdoul Khadre Diop ◽  
Florent Blanchard

The title compound, [Co(C6H6NO3S)2(H2O)2] n , was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The crystal structure consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected via N—H...O and O—H...O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations via NH2PhSO3 − bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3 − moieties and two water molecules, leading to a distorted octahedral environment.


1979 ◽  
Vol 34 (3) ◽  
pp. 383-385 ◽  
Author(s):  
Brigitte Eisenmann ◽  
Herbert Schäfer

Abstract K2Sb4S7 · H2O crystallizes in the triclinic system with a = 1171.4(5) pm, b = 952.0(5) pm, c = 715.6(5) pm and α = 99.36(5)°, β = 86.80(5)°, γ= 103.48(5)°. One half of the Sb atoms has three sulfur neighbours forming with the free electron pair a ψ-ShS3 tetrahedron, while the other half is coordinated by four S atoms to build a ψ-trigonal SbS4 bipyramid. These polyhedra are connected by common edges and corners to a three-dimensional network with two types of channels, in which either K+ ions only or K+ ions and water molecules are located.


2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


2014 ◽  
Vol 70 (12) ◽  
pp. 515-518 ◽  
Author(s):  
Erik Hennings ◽  
Horst Schmidt ◽  
Wolfgang Voigt

The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2solutions is governed by coordination competition of Cl−and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+both in a tetrahedral coordination with Cl−and in an octahedral environment defined by five water molecules and one Cl−shared with the [ZnCl4]2−unit. Thus, these two different types of Zn2+cations form isolated units with composition [Zn2Cl4(H2O)5] (pentaaqua-μ-chlorido-trichloridodizinc). The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+cations, one of which is tetrahedrally coordinated by four Cl−anions. The two other Zn2+cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O)6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O)6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.


2014 ◽  
Vol 70 (3) ◽  
pp. m98-m99
Author(s):  
Olga Kovalchukova ◽  
Ali Sheikh Bostanabad ◽  
Adam Stash ◽  
Svetlana Strashnova ◽  
Igor Zyuzin

In the centrosymmetric title compound, [Ni(C7H6FN2O2)2(H2O)2], the NiIIcation is in a slightly distorted octahedral environment and is surrounded by four O atoms from the N—O groups of the organic ligands [Ni—O = 2.0179 (13) and 2.0283 (12) Å], and two water molecules [Ni—O = 2.0967 (14) Å]. TheN-(2-fluorobenzyl)-N-nitrosohydroxylaminate monoanions act as bidentate chelating ligands. In the crystal, the Ni cations in the columns are shifted in such a way that the coordinated water molecules are involved in the formation of hydrogen bonds with the O atoms of the organic species of neighbouring molecules. Thus, a two-dimensional network parallel to (100) is built up by hydrogen-bonded molecules.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


Sign in / Sign up

Export Citation Format

Share Document