Integrating dual-purpose wheat and canola into high-rainfall livestock systems in south-eastern Australia. 2. Pasture and livestock production

2015 ◽  
Vol 66 (4) ◽  
pp. 377 ◽  
Author(s):  
H. Dove ◽  
J. A. Kirkegaard ◽  
W. M. Kelman ◽  
S. J. Sprague ◽  
S. E. McDonald ◽  
...  

In south-eastern Australia, low winter temperatures often reduce pasture growth and thus winter herbage supply relative to livestock requirements. Grazing of vegetative grain crops in winter is one strategy that might overcome this feed gap. In a study with young sheep over two seasons near Canberra, ACT, we compared pasture-only grazing with three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these, for intervals over the period May–August. We measured forage biomass, sheep grazing days (SGD) and liveweight accumulated per ha. Crop-grazing treatments resulted in much more winter forage for grazing sheep (t DM ha–1): in 2010, one crop 2.5–3.0, two crops 3.5 v. pasture only 1; in 2011, one crop 2, two crops 3 v. pasture only 1.4. In the first season, grazing one crop resulted in ~2000 extra SGD ha–1 and the accumulation of more liveweight per ha than in the pasture-only treatment; grazing of two crops resulted in >3500 extra SGD ha–1. Equivalent values in the second, drier season were: one crop, ~1000 extra SGD ha–1; two crops, 2600 extra SGD ha–1. Spelling of pastures during crop grazing led to extra pasture growth, such that in each of the two seasons, 40% of the total benefit in extra SGD per ha came from the extra pasture. The results indicate that, like grazed wheat, grazed canola can provide valuable winter forage, especially when used together with wheat. The data also provide the first quantification of the effect of crop grazing on pasture spelling and subsequent pasture supply, and suggest value in the incorporation of grazing wheat and canola into grazing systems in the high-rainfall zone.


2015 ◽  
Vol 66 (4) ◽  
pp. 365 ◽  
Author(s):  
S. J. Sprague ◽  
J. A. Kirkegaard ◽  
H. Dove ◽  
J. M. Graham ◽  
S. E. McDonald ◽  
...  

The development of guidelines for successful dual-purpose (graze and grain) use of wheat and canola in Australia’s high-rainfall zones (HRZ) has mostly emerged from separate wheat- and canola-focused research. Less attention has been placed on the benefits of integrating dual-purpose wheat and canola into pasture-based grazing enterprises. We conducted a farming systems experiment during 2010–11 to evaluate the benefits of integrating wheat and canola as dual-purpose crops into a pasture-based grazing system in Australia’s south-eastern tablelands. We compared forage production and grain yield in three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these. Initial growth rates were higher in early-autumn-sown canola than wheat in 2010, but were much lower although similar in both crops in 2011. Significant forage was available from both canola (3.1–3.4 t ha–1) and wheat (2.3–2.4 t ha–1) at the onset of grazing, but winter growth rates of wheat were higher than those of canola, leading to increased sheep grazing days (SGD). In the favourable 2010 season, dual-purpose wheat and canola separately provided 2393 and 2095 SGD ha–1, and yielded 5.0 and 1.9 t ha–1 grain, respectively, with an apparent nitrogen limitation in canola. In the drier season of 2011, grazing was reduced to 1455 and 735 SGD ha–1 in wheat and canola, respectively. Wheat yield was reduced from 5.9 to 5.4 t ha–1 grain by grazing, whereas canola yield was unaffected (3.6 t ha–1). In both years, grazing did not affect harvest index or oil content of canola, but harvest index was higher in grazed wheat crops. The yield of wheat and canola crops grazed in sequence did not differ from yield in treatments where animals grazed only a single crop, but the total overall grazing window when crops were grazed sequentially increased by 1054 and 618 SGD ha–1 in wheat, and by 1352 and 1338 SGD ha–1 in canola in 2010 and 2011, respectively. The major benefits of including crops that can be grazed sequentially were the widening of the grazing window and other operational windows (sowing, harvest), along with the rotational benefits for wheat by including canola in the system. Additional benefits to pastures may include eliminating the need to re-sow, because a more productive pasture composition is maintained under lower grazing pressure while stock are on crops, and reduced weed invasion. The commercial availability of new, herbicide-tolerant winter canola varieties provides significant opportunities to underpin the performance of dual-purpose crop sequences on mixed farms in the high-rainfall zone.



2014 ◽  
Vol 156 ◽  
pp. 30-39 ◽  
Author(s):  
Susan J. Sprague ◽  
John A. Kirkegaard ◽  
John M. Graham ◽  
Hugh Dove ◽  
Walter M. Kelman


2015 ◽  
Vol 66 (4) ◽  
pp. 390 ◽  
Author(s):  
L. W. Bell ◽  
H. Dove ◽  
S. E. McDonald ◽  
J. A. Kirkegaard

Dual-purpose crops can provide valuable winter forage in livestock production systems and increase subsequent pasture availability. Using experimental measurements of sheep grazing on pasture only or dual-purpose crops of wheat, canola, and wheat and canola in combination, and their associated effects on subsequent pasture grazing, we estimated for two different years the whole-farm changes in whole-farm sheep grazing days (SGD), relative farm production and farm economic impact. The increased winter feed supply and higher grazing intensity on dual-purpose crops allowed 2–3 times the area of pasture to be spelled, which together enabled increases in potential year-round pasture stocking rate. Up to 20% of farm area could be allocated to dual-purpose crops while still obtaining the same number of SGD per farm ha with additional grain production (5.0–5.4 t wheat ha–1 and 1.9–3.6 t canola ha–1) adding significantly to farm profitability and production. Allocating 10–20% of the farm to a combination of dual-purpose wheat and canola grazed in sequence could increase whole-farm SGD by 10–15%, increase farm output by >25% and increase estimated farm profit margin by >AU$150 farm ha–1 compared with pasture-only livestock systems. The long crop-grazing period from wheat and canola in combination providing a large pasture-spelling benefit was a key factor enabling these economic and productivity increases. Introducing wheat or canola alone on up to 30% of the farm is likely to reduce SGD per farm ha, but still significantly increase whole-farm productivity (10–20%) and estimated profit margin ($50–100 farm ha–1). Over the two very different experimental growing seasons, the estimated relative changes in whole-farm productivity and estimated profit margin were similar, indicating that these benefits are likely to be consistent over a range of years. Together, these findings suggest that once whole-farm livestock feed-base effects are considered, large economic and productivity benefits can be attributed to dual-purpose crops when integrated into livestock production systems in Australia’s southern high-rainfall zone.



2001 ◽  
Vol 52 (3) ◽  
pp. 329 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
M. K. Conyers ◽  
B. R. Cullis ◽  
P. D. Cregan ◽  
...  

A long-term trial, known as ‘managing acid soils through efficient rotations’ (MASTER), commenced in 1992 to develop and demonstrate a cropping system that is economically viable on the highly acid soils of the traditional permanent pasture region in south-eastern Australia, so that their fertility is sustained or improved. There were 2 permanent pasture systems and 2 pasture–crop rotations, each with and without lime. This paper reports the effect of lime on crop production over the first cycle (6 years). On annual pasture–crop rotations, lime significantly increased the dry matter production at anthesis and grain yields of wheat (cv. Dollarbird) compared with the unlimed treatments. Averaged across years from 1992 to 1997 (excluding the severe drought year 1994), wheat crops produced 1.6 t/ha more grain on the limed treatments than on the unlimed treatments (3.6 v. 2.0 t/ha). On perennial pasture–crop rotations, the lime effects varied with crops grown at each phase and year. For example, despite being tolerant of acidity, oats (cv. Yarran) responded to lime in 1996. Likewise, triticale (cv. Abacus) responded to lime in 1997. Wheat (cv. Dollarbird) that is moderately tolerant to acidity responded to lime in phase 6 from 1992 to 1997 excluding 1994 (3.5 v. 1.7 t/ha). Acid-tolerant wheat varieties, triticale, and narrow-leaf lupins are considered the most viable crops for the soil and climatic conditions encountered in this high rainfall (5000—800 mm per annum) area of south-eastern Australia.



2009 ◽  
Vol 49 (10) ◽  
pp. 759 ◽  
Author(s):  
Andrew D. Moore

Dual-purpose cereals are employed in the high-rainfall zone of southern Australia to provide additional winter forage. Recently there has been interest in applying this technology in the drier environments of South and Western Australia. It would therefore be useful to gain an understanding of the trade-offs and risks associated with grazing wheat crops in different locations. In this study the APSIM (Agricultural Production Systems Simulator) crop and soil simulation models were linked to the GRAZPLAN pasture and livestock models and used to examine the benefits and costs of grazing cereal crops at 21 locations spanning seven of the regions participating in the Grain & Graze research, development and extension program. A self-contained part of a mixed farm (an annual pasture–wheat rotation plus permanent pastures) supporting a breeding ewe enterprise was simulated. At each location the consequences were examined of: (i) replacing a spring wheat cultivar with a dual-purpose cultivar (cv. Wedgetail or Tennant) in 1 year of the rotation; and (ii) either grazing that crop in winter, or leaving it ungrazed. The frequency of early sowing opportunities enabling the use of a dual-purpose cultivar was high. When left ungrazed the dual-purpose cultivars yielded less grain on average (by 0.1–0.9 t/ha) than spring cultivars in Western Australia and the Eyre Peninsula but more (by 0.25–0.8 t/ha) in south-eastern Australia. Stocking rate and hence animal production per ha could be increased proportionately more when a dual-purpose cultivar was used for grazing; because of the adjustments to stocking rates, grazing of the wheat had little effect on lamb sale weights. Across locations, the relative reduction in wheat yield caused by grazing the wheats was proportional to the grazing pressure upon them. Any economic advantage of moving to a dual-purpose system is likely to arise mainly from the benefit to livestock production in Western Australia, but primarily from grain production in south-eastern Australia (including the Mallee region). Between years, the relationship between increased livestock production and decreased grain yield from grazing crops shifts widely; it may therefore be possible to identify flexible grazing rules that optimise this trade-off.



2003 ◽  
Vol 43 (10) ◽  
pp. 1231 ◽  
Author(s):  
S. J. Marcroft ◽  
S. J. Sprague ◽  
S. J. Pymer ◽  
P. A. Salisbury ◽  
B. J. Howlett

The production of windborne ascospore inoculum of the blackleg fungus (Leptosphaeria maculans) was determined during 2000 and 2001 in 3 environments (Birchip, low rainfall; Wonwondah, medium rainfall; Lake Bolac, high rainfall) in Victoria. The weight of canola stubble (kg/ha) remaining on the soil surface in paddocks was estimated 6, 18, 30 and 42 months after harvest of the original canola crop. In all 3 environments only small amounts of stubble were present 18 months after harvest. Eighty percent of the 6-month-old stubble comprised stems and branches, with the remaining 20% being root material, while 42-month-old stubble consisted only of root material. Paddocks subjected to raking and burning contained only half the weight of stubble compared with paddocks that were harrowed. Where canola was harvested in January, even when no management strategy was used, 80% of subsequent stubble was no longer on the soil surface by July of that year. Pseudothecia from 6-month-old stubble from the high rainfall environment discharged significantly more ascospores than stubble of the same age from the medium rainfall environment, which in turn discharged more than stubble from the low rainfall environment. In all environments, paddocks containing 6-month-old canola stubble discharged 30-fold as many ascospores per hectare as older stubble paddocks.



2010 ◽  
Vol 61 (8) ◽  
pp. 645 ◽  
Author(s):  
G. D. Li ◽  
Z. N. Nie ◽  
S. P. Boschma ◽  
B. S. Dear ◽  
G. M. Lodge ◽  
...  

The persistence and productivity of a diverse range of Medicago sativa germplasm including representatives of subspecies sativa, caerulea, falcata and varia were examined at 3 field sites in south-eastern Australia over 4 years. Sites were located at Tamworth, Barmedman and Hamilton, forming a 1200 km north–south transect with rainfall distribution varying from predominantly summer dominant in the north to winter dominant at the most southerly site. Several entries of subspecies varia and caerulea had herbage yields and persistence equivalent to that of M. sativa subspecies sativa cultivar Sceptre, a highly winter-active type that was used as a standard. The cultivar Cancreep, a cross of M. falcata and M. sativa, had a total yield over 3 years equivalent to 84–91% of Sceptre at the 2 sites where it was sown. Individual lines of subspecies varia demonstrated good persistence under grazing and were ranked 2nd and 6th out of 35 accessions for frequency in year 4 at Barmedman, the driest site, and 5th, 7th and 9th out of 33 accessions at Tamworth, the more summer-dominant rainfall site. Entries of subspecies falcata were among the least productive and persistent. The study indicated that germplasm from subspecies caerulea and varia offered hitherto unexploited potential for selection as persistent and drought-tolerant perennial legume alternatives to M. sativa for extensive low management grazing systems of south-eastern Australia.



2013 ◽  
Vol 95 (2) ◽  
pp. 269-285 ◽  
Author(s):  
Robert H. Harris ◽  
Sally J. Officer ◽  
Patricia A. Hill ◽  
Roger D. Armstrong ◽  
Kirsten M. Fogarty ◽  
...  


2016 ◽  
Vol 106 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Robert H. Harris ◽  
Roger D. Armstrong ◽  
Ashley J. Wallace ◽  
Oxana N. Belyaeva


2018 ◽  
Vol 69 (3) ◽  
pp. 303 ◽  
Author(s):  
Corinne Celestina ◽  
Jon Midwood ◽  
Stuart Sherriff ◽  
Sam Trengove ◽  
James Hunt ◽  
...  

In the high-rainfall zone of south-eastern Australia, deep incorporation of organic matter has previously been reported to increase crop yields by improving access to subsoil water and nutrients, resulting from the amelioration of subsoil constraints. However, previous experiments did not separate the yield response resulting from nutrients contained in the amendment from yield response due to amelioration of subsoil constraints. In order to separate these effects, eight field experiments were conducted on a range of soil types across the medium- and high-rainfall zones of south-eastern Australia between 2014 and 2016. Grain yield and quality responses of a range of annual crops (canola, wheat, barley and lentil) to surface and deep placement of poultry litter and inorganic fertilisers with matched nutrition were assessed. Over 15 site × year combinations, there was no consistent, significant positive interaction between amendment and incorporation treatments necessary to demonstrate that deep placement of amendment (i.e. subsoil manuring) had advantages over surface application of the same amendment. Differences in crop yield in these experiments are attributed to nutrients (particularly nitrogen) supplied by the amendment, and not to the amelioration of subsoil constraints. Future research, including analysis of subsoil physicochemical properties and plant nutrient concentrations after treatment, is necessary to confirm the role of nitrogen and other nutrients in the crop response to subsoil manuring.



Sign in / Sign up

Export Citation Format

Share Document