Integrating dual-purpose wheat and canola into high-rainfall livestock systems in south-eastern Australia. 3. An extrapolation to whole-farm grazing potential, productivity and profitability

2015 ◽  
Vol 66 (4) ◽  
pp. 390 ◽  
Author(s):  
L. W. Bell ◽  
H. Dove ◽  
S. E. McDonald ◽  
J. A. Kirkegaard

Dual-purpose crops can provide valuable winter forage in livestock production systems and increase subsequent pasture availability. Using experimental measurements of sheep grazing on pasture only or dual-purpose crops of wheat, canola, and wheat and canola in combination, and their associated effects on subsequent pasture grazing, we estimated for two different years the whole-farm changes in whole-farm sheep grazing days (SGD), relative farm production and farm economic impact. The increased winter feed supply and higher grazing intensity on dual-purpose crops allowed 2–3 times the area of pasture to be spelled, which together enabled increases in potential year-round pasture stocking rate. Up to 20% of farm area could be allocated to dual-purpose crops while still obtaining the same number of SGD per farm ha with additional grain production (5.0–5.4 t wheat ha–1 and 1.9–3.6 t canola ha–1) adding significantly to farm profitability and production. Allocating 10–20% of the farm to a combination of dual-purpose wheat and canola grazed in sequence could increase whole-farm SGD by 10–15%, increase farm output by >25% and increase estimated farm profit margin by >AU$150 farm ha–1 compared with pasture-only livestock systems. The long crop-grazing period from wheat and canola in combination providing a large pasture-spelling benefit was a key factor enabling these economic and productivity increases. Introducing wheat or canola alone on up to 30% of the farm is likely to reduce SGD per farm ha, but still significantly increase whole-farm productivity (10–20%) and estimated profit margin ($50–100 farm ha–1). Over the two very different experimental growing seasons, the estimated relative changes in whole-farm productivity and estimated profit margin were similar, indicating that these benefits are likely to be consistent over a range of years. Together, these findings suggest that once whole-farm livestock feed-base effects are considered, large economic and productivity benefits can be attributed to dual-purpose crops when integrated into livestock production systems in Australia’s southern high-rainfall zone.


2015 ◽  
Vol 66 (4) ◽  
pp. 377 ◽  
Author(s):  
H. Dove ◽  
J. A. Kirkegaard ◽  
W. M. Kelman ◽  
S. J. Sprague ◽  
S. E. McDonald ◽  
...  

In south-eastern Australia, low winter temperatures often reduce pasture growth and thus winter herbage supply relative to livestock requirements. Grazing of vegetative grain crops in winter is one strategy that might overcome this feed gap. In a study with young sheep over two seasons near Canberra, ACT, we compared pasture-only grazing with three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these, for intervals over the period May–August. We measured forage biomass, sheep grazing days (SGD) and liveweight accumulated per ha. Crop-grazing treatments resulted in much more winter forage for grazing sheep (t DM ha–1): in 2010, one crop 2.5–3.0, two crops 3.5 v. pasture only 1; in 2011, one crop 2, two crops 3 v. pasture only 1.4. In the first season, grazing one crop resulted in ~2000 extra SGD ha–1 and the accumulation of more liveweight per ha than in the pasture-only treatment; grazing of two crops resulted in >3500 extra SGD ha–1. Equivalent values in the second, drier season were: one crop, ~1000 extra SGD ha–1; two crops, 2600 extra SGD ha–1. Spelling of pastures during crop grazing led to extra pasture growth, such that in each of the two seasons, 40% of the total benefit in extra SGD per ha came from the extra pasture. The results indicate that, like grazed wheat, grazed canola can provide valuable winter forage, especially when used together with wheat. The data also provide the first quantification of the effect of crop grazing on pasture spelling and subsequent pasture supply, and suggest value in the incorporation of grazing wheat and canola into grazing systems in the high-rainfall zone.



2009 ◽  
Vol 49 (10) ◽  
pp. 759 ◽  
Author(s):  
Andrew D. Moore

Dual-purpose cereals are employed in the high-rainfall zone of southern Australia to provide additional winter forage. Recently there has been interest in applying this technology in the drier environments of South and Western Australia. It would therefore be useful to gain an understanding of the trade-offs and risks associated with grazing wheat crops in different locations. In this study the APSIM (Agricultural Production Systems Simulator) crop and soil simulation models were linked to the GRAZPLAN pasture and livestock models and used to examine the benefits and costs of grazing cereal crops at 21 locations spanning seven of the regions participating in the Grain & Graze research, development and extension program. A self-contained part of a mixed farm (an annual pasture–wheat rotation plus permanent pastures) supporting a breeding ewe enterprise was simulated. At each location the consequences were examined of: (i) replacing a spring wheat cultivar with a dual-purpose cultivar (cv. Wedgetail or Tennant) in 1 year of the rotation; and (ii) either grazing that crop in winter, or leaving it ungrazed. The frequency of early sowing opportunities enabling the use of a dual-purpose cultivar was high. When left ungrazed the dual-purpose cultivars yielded less grain on average (by 0.1–0.9 t/ha) than spring cultivars in Western Australia and the Eyre Peninsula but more (by 0.25–0.8 t/ha) in south-eastern Australia. Stocking rate and hence animal production per ha could be increased proportionately more when a dual-purpose cultivar was used for grazing; because of the adjustments to stocking rates, grazing of the wheat had little effect on lamb sale weights. Across locations, the relative reduction in wheat yield caused by grazing the wheats was proportional to the grazing pressure upon them. Any economic advantage of moving to a dual-purpose system is likely to arise mainly from the benefit to livestock production in Western Australia, but primarily from grain production in south-eastern Australia (including the Mallee region). Between years, the relationship between increased livestock production and decreased grain yield from grazing crops shifts widely; it may therefore be possible to identify flexible grazing rules that optimise this trade-off.



2015 ◽  
Vol 66 (4) ◽  
pp. 365 ◽  
Author(s):  
S. J. Sprague ◽  
J. A. Kirkegaard ◽  
H. Dove ◽  
J. M. Graham ◽  
S. E. McDonald ◽  
...  

The development of guidelines for successful dual-purpose (graze and grain) use of wheat and canola in Australia’s high-rainfall zones (HRZ) has mostly emerged from separate wheat- and canola-focused research. Less attention has been placed on the benefits of integrating dual-purpose wheat and canola into pasture-based grazing enterprises. We conducted a farming systems experiment during 2010–11 to evaluate the benefits of integrating wheat and canola as dual-purpose crops into a pasture-based grazing system in Australia’s south-eastern tablelands. We compared forage production and grain yield in three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these. Initial growth rates were higher in early-autumn-sown canola than wheat in 2010, but were much lower although similar in both crops in 2011. Significant forage was available from both canola (3.1–3.4 t ha–1) and wheat (2.3–2.4 t ha–1) at the onset of grazing, but winter growth rates of wheat were higher than those of canola, leading to increased sheep grazing days (SGD). In the favourable 2010 season, dual-purpose wheat and canola separately provided 2393 and 2095 SGD ha–1, and yielded 5.0 and 1.9 t ha–1 grain, respectively, with an apparent nitrogen limitation in canola. In the drier season of 2011, grazing was reduced to 1455 and 735 SGD ha–1 in wheat and canola, respectively. Wheat yield was reduced from 5.9 to 5.4 t ha–1 grain by grazing, whereas canola yield was unaffected (3.6 t ha–1). In both years, grazing did not affect harvest index or oil content of canola, but harvest index was higher in grazed wheat crops. The yield of wheat and canola crops grazed in sequence did not differ from yield in treatments where animals grazed only a single crop, but the total overall grazing window when crops were grazed sequentially increased by 1054 and 618 SGD ha–1 in wheat, and by 1352 and 1338 SGD ha–1 in canola in 2010 and 2011, respectively. The major benefits of including crops that can be grazed sequentially were the widening of the grazing window and other operational windows (sowing, harvest), along with the rotational benefits for wheat by including canola in the system. Additional benefits to pastures may include eliminating the need to re-sow, because a more productive pasture composition is maintained under lower grazing pressure while stock are on crops, and reduced weed invasion. The commercial availability of new, herbicide-tolerant winter canola varieties provides significant opportunities to underpin the performance of dual-purpose crop sequences on mixed farms in the high-rainfall zone.



2014 ◽  
Vol 156 ◽  
pp. 30-39 ◽  
Author(s):  
Susan J. Sprague ◽  
John A. Kirkegaard ◽  
John M. Graham ◽  
Hugh Dove ◽  
Walter M. Kelman


2021 ◽  
Author(s):  
Shawn R. McGrath ◽  
Cesar S. Pinares-Patiño ◽  
Scott E. McDonald ◽  
John A. Kirkegaard ◽  
Richard J. Simpson ◽  
...  


2021 ◽  
Vol 5 ◽  
Author(s):  
Paulo César de Faccio Carvalho ◽  
Pedro Arthur de Albuquerque Nunes ◽  
Arthur Pontes-Prates ◽  
Leonardo Silvestri Szymczak ◽  
William de Souza Filho ◽  
...  

Closely integrated crop and livestock production systems used to be the rule in agriculture before the industrial revolution. However, agricultural landscapes have undergone a massive intensification process in recent decades. This trajectory has led to uniform landscapes of specialized cropping systems or consolidated zones of intensive livestock production. Loss of diversity is at the core of increasing side effects on the environment from agriculture. The unintended consequences of specialization demand the reconciliation of food production with environmental quality. We argue that the reconnection of grazing livestock to specialized crop landscapes can restore decoupled biogeochemical cycles and reintroduce the necessary complexity to restore ecosystem functioning. Besides, the reconnection of crops and livestock promotes several ecosystem services underlying multifunctionality. We focus on the capacity of integrated crop-livestock systems to create biophysical and socioeconomic resilience that cope with weather and market oscillations. We present examples of redesigned landscapes that leverage grazing animals to optimize food production per unit of land while mitigating the externalities of specialized agriculture. We also debate mindset barriers to the shift of current specialization trends toward the design of multifunctional landscapes.



2019 ◽  
Vol 48 (3) ◽  
pp. 198-209 ◽  
Author(s):  
Brigitte L Maass ◽  
Bruce C Pengelly

While interest in the potential of tropical and subtropical forage (TSTF) germplasm for improved livestock production commenced earlier, it was not until the 1950s and 1960s that plant collecting and research on diversity and utilization of grasses and legumes reached significant global momentum. The subsequent engagement in pasture and forage research by the Consultative Group on International Agricultural Research (CGIAR) centres, such as the International Center for Tropical Agriculture (CIAT) and International Livestock Centre for Africa (ILCA; 1974–1995)/International Livestock Research Institute (ILRI; since 1995) from the 1970s onwards, built on the advances made by national centres in Australia, the United States of America, Kenya and elsewhere. By 1990–2000, TSTFs were recognized for contributing to a range of commercial and smallholder livestock production systems in Latin America, Australia, Southeast Asia, South Asia and Africa. However, their use, the value of further research and the need to maintain the very large and diverse collections held in international and national genebanks were challenged by this time because of perceived environmental risks, questions about whether or not past achievements could be bettered and the high costs of maintaining genebanks. Since then, the decline in investment and the quality of conservation and curation has been a relatively rapid process and reached the crisis point of today in just 20–25 years. This article traces 70 years of expansion and then decline of plant collecting, conservation, research and commercialization of TSTFs as a new commodity and examines the reasons for the sharp changes that have taken place. In a second article (this issue), the argument is made for swift and drastic action to prevent critical germplasm from being lost, to enable genebanks to play their crucial and unique role in underpinning improving production and productivity in livestock systems and to provide key germplasm tools to achieve environmental benefits.



2009 ◽  
Vol 49 (10) ◽  
pp. 788 ◽  
Author(s):  
G. D. Millar ◽  
R. E. Jones ◽  
D. L. Michalk ◽  
S. Brady

The Grain & Graze Whole-Farm Model was developed as a simple modelling tool to identify better strategies to improve the income of farmers and overcome grassland degradation. Using information on farm structure, crop and forage production systems, livestock production systems and variable costs involved in all enterprises, maximum whole-farm gross margins are obtained for an optimum or a prescribed mix of enterprises. The incorporation of production systems for different rainfall scenarios enables climatic risks and water use efficiencies of different enterprises to be investigated. Model simulations demonstrated the potential improvements that could be achieved in dollar water use efficiency ($WUE), by changes in management and/or changes in enterprise. The design of the model makes it a valuable tool for evaluating new systems, as it easy to develop new crop, pasture and livestock systems. Innovative farming systems such as pasture cropping and alley farming are included in the model.



2018 ◽  
Vol 27 (2) ◽  
pp. 25005 ◽  
Author(s):  
Amaury Burlamaqui Bendahan ◽  
René Poccard-Chapuis ◽  
Roberto Dantas de Medeiros ◽  
Newton de Lucena Costa ◽  
Jean-François Tourrand

Livestock production systems in the Amazon have caused substantial environmental damage. With the pressure to improve and increase production on limited lands, and the new ways of evaluating systems, farmers are looking for alternatives to livestock production. The scientific community began to promote incorporating trees as a component of livestock systems, as an alternative to livestock specialization. However, these systems were not adopted as expected. One of the hypotheses is that this alternative requires a complicated management. In this context, the objective of this study was to describe the implications for the management of cattle farms and the work necessary to include an integrated crop-livestock-forestry system (CLFIS) in cattle farms in Roraima State. To address this objective, we used secondary government data, interviews, and farm monitoring. The results showed that, regardless of the scale of production, more components in the CLFIS result in more activity differentiation, more diversification of knowledge and work, and a more complicated management. In conclusion, the adoption of a CLFIS to replace the exclusive production of livestock results in losing the flexibility and characteristics of livestock production in Amazonia. The increase in the average age and the low level of schooling of farmers and rural workers are factors that make it difficult for them to internalize, understand and adopt CLFIS. Labour and management are complicating factors contributing to the low level of CLFIS adoption by Roraima State farmers.



2021 ◽  
Vol 5 ◽  
Author(s):  
An M. O. Notenbaert ◽  
Sabine Douxchamps ◽  
Daniel M. Villegas ◽  
Jacobo Arango ◽  
Birthe K. Paul ◽  
...  

Livestock are critical for incomes, livelihoods, nutrition and ecosystems management throughout the global South. Livestock production and the consumption of livestock-based foods such as meat, cheese, and milk is, however, under global scrutiny for its contribution to global warming, deforestation, biodiversity loss, water use, pollution, and land/soil degradation. This paper argues that, although the environmental footprint of livestock production presents a real threat to planetary sustainability, also in the global south, this is highly contextual. Under certain context-specific management regimes livestock can deliver multiple benefits for people and planet. We provide evidence that a move toward sustainable intensification of livestock production is possible and could mitigate negative environmental impacts and even provide critical ecosystem services, such as improved soil health, carbon sequestration, and enhanced biodiversity on farms. The use of cultivated forages, many improved through selection or breeding and including grasses, legumes and trees, in integrated crop-tree-livestock systems is proposed as a stepping stone toward agroecological transformation. We introduce cultivated forages, explain their multi-functionality and provide an overview of where and to what extent the forages have been applied and how this has benefited people and the planet alike. We then examine their potential to contribute to the 13 principles of agroecology and find that integrating cultivated forages in mixed crop-tree-livestock systems follows a wide range of agroecological principles and increases the sustainability of livestock production across the globe. More research is, however, needed at the food system scale to fully understand the role of forages in the sociological and process aspects of agroecology. We make the case for further genetic improvement of cultivated forages and strong multi-disciplinary systems research to strengthen our understanding of the multidimensional impacts of forages and for managing agro-environmental trade-offs. We finish with a call for action, for the agroecological and livestock research and development communities to improve communication and join hands for a sustainable agri-food system transformation.



Sign in / Sign up

Export Citation Format

Share Document