Integrating dual-purpose wheat and canola into high-rainfall livestock systems in south-eastern Australia. 1. Crop forage and grain yield

2015 ◽  
Vol 66 (4) ◽  
pp. 365 ◽  
Author(s):  
S. J. Sprague ◽  
J. A. Kirkegaard ◽  
H. Dove ◽  
J. M. Graham ◽  
S. E. McDonald ◽  
...  

The development of guidelines for successful dual-purpose (graze and grain) use of wheat and canola in Australia’s high-rainfall zones (HRZ) has mostly emerged from separate wheat- and canola-focused research. Less attention has been placed on the benefits of integrating dual-purpose wheat and canola into pasture-based grazing enterprises. We conducted a farming systems experiment during 2010–11 to evaluate the benefits of integrating wheat and canola as dual-purpose crops into a pasture-based grazing system in Australia’s south-eastern tablelands. We compared forage production and grain yield in three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these. Initial growth rates were higher in early-autumn-sown canola than wheat in 2010, but were much lower although similar in both crops in 2011. Significant forage was available from both canola (3.1–3.4 t ha–1) and wheat (2.3–2.4 t ha–1) at the onset of grazing, but winter growth rates of wheat were higher than those of canola, leading to increased sheep grazing days (SGD). In the favourable 2010 season, dual-purpose wheat and canola separately provided 2393 and 2095 SGD ha–1, and yielded 5.0 and 1.9 t ha–1 grain, respectively, with an apparent nitrogen limitation in canola. In the drier season of 2011, grazing was reduced to 1455 and 735 SGD ha–1 in wheat and canola, respectively. Wheat yield was reduced from 5.9 to 5.4 t ha–1 grain by grazing, whereas canola yield was unaffected (3.6 t ha–1). In both years, grazing did not affect harvest index or oil content of canola, but harvest index was higher in grazed wheat crops. The yield of wheat and canola crops grazed in sequence did not differ from yield in treatments where animals grazed only a single crop, but the total overall grazing window when crops were grazed sequentially increased by 1054 and 618 SGD ha–1 in wheat, and by 1352 and 1338 SGD ha–1 in canola in 2010 and 2011, respectively. The major benefits of including crops that can be grazed sequentially were the widening of the grazing window and other operational windows (sowing, harvest), along with the rotational benefits for wheat by including canola in the system. Additional benefits to pastures may include eliminating the need to re-sow, because a more productive pasture composition is maintained under lower grazing pressure while stock are on crops, and reduced weed invasion. The commercial availability of new, herbicide-tolerant winter canola varieties provides significant opportunities to underpin the performance of dual-purpose crop sequences on mixed farms in the high-rainfall zone.

2015 ◽  
Vol 66 (4) ◽  
pp. 377 ◽  
Author(s):  
H. Dove ◽  
J. A. Kirkegaard ◽  
W. M. Kelman ◽  
S. J. Sprague ◽  
S. E. McDonald ◽  
...  

In south-eastern Australia, low winter temperatures often reduce pasture growth and thus winter herbage supply relative to livestock requirements. Grazing of vegetative grain crops in winter is one strategy that might overcome this feed gap. In a study with young sheep over two seasons near Canberra, ACT, we compared pasture-only grazing with three separate crop–livestock systems in which the sheep grazed long-season wheat, winter canola or a combination of these, for intervals over the period May–August. We measured forage biomass, sheep grazing days (SGD) and liveweight accumulated per ha. Crop-grazing treatments resulted in much more winter forage for grazing sheep (t DM ha–1): in 2010, one crop 2.5–3.0, two crops 3.5 v. pasture only 1; in 2011, one crop 2, two crops 3 v. pasture only 1.4. In the first season, grazing one crop resulted in ~2000 extra SGD ha–1 and the accumulation of more liveweight per ha than in the pasture-only treatment; grazing of two crops resulted in >3500 extra SGD ha–1. Equivalent values in the second, drier season were: one crop, ~1000 extra SGD ha–1; two crops, 2600 extra SGD ha–1. Spelling of pastures during crop grazing led to extra pasture growth, such that in each of the two seasons, 40% of the total benefit in extra SGD per ha came from the extra pasture. The results indicate that, like grazed wheat, grazed canola can provide valuable winter forage, especially when used together with wheat. The data also provide the first quantification of the effect of crop grazing on pasture spelling and subsequent pasture supply, and suggest value in the incorporation of grazing wheat and canola into grazing systems in the high-rainfall zone.


2015 ◽  
Vol 66 (4) ◽  
pp. 260 ◽  
Author(s):  
S. J. Sprague ◽  
J. A. Kirkegaard ◽  
J. M. Graham ◽  
L. W. Bell ◽  
M. Seymour ◽  
...  

Cropping has recently expanded into arable areas of the high rainfall zone (HRZ) of Australia. We assessed the suitability of canola varieties of winter, winter × spring and spring-maturity at six sites across the south-eastern, northern and western HRZ of Australia for their suitability for dual-purpose production. Experiments measured potential forage production and the effect of defoliation or grazing on grain yield of crops sown from mid-March to mid-May. Overall, these experiments demonstrated the potential for dual-purpose canola across a wide area of the HRZ. In the south-eastern HRZ where winter conditions were sufficient for vernalisation and spring conditions were mild, winter and winter × spring types outperformed spring types as they provided an extended vegetative period for ‘safe’ grazing (prior to stem elongation), producing 3.0–6.8 t dry matter (DM) ha–1 of forage and recovered to produce 2.5–4.9 t ha–1 of grain yield. In the south-eastern region, early-sown winter types produced more forage than other canola types for grazing in late autumn and winter. In one experiment with four sowing times, consecutive delays in sowing of 2 weeks reduced forage available for grazing by 58%, 72% and 95% compared with the earliest sowing time of 10 March (6.1 t DM ha–1). Although spring types in this region provided some potential for grazing, the phenology was unsuitable for early sowing as the rapid onset of flowering reduced the period of safe grazing. Winter types were not suited to the western region, but the winter × spring and spring types produced >1.0 t DM ha–1 of forage and grain yield of 2.3 t ha–1. In the northern region, spring types produced the highest grain yield (>3.0 t ha–1) but suffered significant yield penalties associated with grazing. In other regions there was generally little or no effect of grazing on grain yield when crops were grazed or defoliated before stem elongation. These experimental studies confirm the potential for dual-purpose canola across all regions of the HRZ when suitable maturity types are sown, managed and grazed appropriately.


2015 ◽  
Vol 66 (4) ◽  
pp. 390 ◽  
Author(s):  
L. W. Bell ◽  
H. Dove ◽  
S. E. McDonald ◽  
J. A. Kirkegaard

Dual-purpose crops can provide valuable winter forage in livestock production systems and increase subsequent pasture availability. Using experimental measurements of sheep grazing on pasture only or dual-purpose crops of wheat, canola, and wheat and canola in combination, and their associated effects on subsequent pasture grazing, we estimated for two different years the whole-farm changes in whole-farm sheep grazing days (SGD), relative farm production and farm economic impact. The increased winter feed supply and higher grazing intensity on dual-purpose crops allowed 2–3 times the area of pasture to be spelled, which together enabled increases in potential year-round pasture stocking rate. Up to 20% of farm area could be allocated to dual-purpose crops while still obtaining the same number of SGD per farm ha with additional grain production (5.0–5.4 t wheat ha–1 and 1.9–3.6 t canola ha–1) adding significantly to farm profitability and production. Allocating 10–20% of the farm to a combination of dual-purpose wheat and canola grazed in sequence could increase whole-farm SGD by 10–15%, increase farm output by >25% and increase estimated farm profit margin by >AU$150 farm ha–1 compared with pasture-only livestock systems. The long crop-grazing period from wheat and canola in combination providing a large pasture-spelling benefit was a key factor enabling these economic and productivity increases. Introducing wheat or canola alone on up to 30% of the farm is likely to reduce SGD per farm ha, but still significantly increase whole-farm productivity (10–20%) and estimated profit margin ($50–100 farm ha–1). Over the two very different experimental growing seasons, the estimated relative changes in whole-farm productivity and estimated profit margin were similar, indicating that these benefits are likely to be consistent over a range of years. Together, these findings suggest that once whole-farm livestock feed-base effects are considered, large economic and productivity benefits can be attributed to dual-purpose crops when integrated into livestock production systems in Australia’s southern high-rainfall zone.


2015 ◽  
Vol 66 (4) ◽  
pp. 308 ◽  
Author(s):  
Alison. J. Frischke ◽  
James R. Hunt ◽  
Dannielle K. McMillan ◽  
Claire J. Browne

In the Mallee region of north-western Victoria, Australia, there is very little grazing of crops that are intended for grain production. The success of dual-purpose crops in other regions in south-eastern Australia with higher and more evenly distributed rainfall has driven interest in assessing the performance of dual-purpose cereals in the region. Five experiments were established in five consecutive years (2009–13) in the southern Mallee to measure the forage production and grain yield and quality response in wheat and barley to grazing by sheep or mechanical defoliation. The first three experiments focused on spring cultivars sown from late April to June, and the last two on winter cultivars planted from late February to early March. Cereal crops provided early and nutritious feed for livestock, with earlier sowing increasing the amount of dry matter available for winter grazing, and barley consistently produced more dry matter at the time of grazing or defoliation than wheat. However, the grain-production response of cereals to grazing or defoliation was variable and unpredictable. Effects on yield varied from –0.7 to +0.6 t/ha, with most site × year × cultivar combinations neutral (23) or negative (14), and few positive (2). Changes in grain protein were generally consistent with yield dilution effects. Defoliation increased the percentage of screenings (grains passing a 2-mm sieve) in three of five experiments. Given the risk of reduced grain yield and quality found in this study, and the importance of grain income in determining farm profitability in the region, it is unlikely that dual-purpose use of current cereal cultivars will become widespread under existing grazing management guidelines for dual-purpose crops (i.e. that cereal crops can be safely grazed once anchored, until Zadoks growth stage Z30, without grain yield penalty). It was demonstrated that early-sown winter wheat cultivars could produce more dry matter for grazing (0.4–0.5 t/ha) than later sown spring wheat and barley cultivars popular in the region (0.03–0.21 t/ha), and development of regionally adapted winter cultivars may facilitate adoption of dual-purpose cereals on mixed farms.


2001 ◽  
Vol 52 (3) ◽  
pp. 329 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
M. K. Conyers ◽  
B. R. Cullis ◽  
P. D. Cregan ◽  
...  

A long-term trial, known as ‘managing acid soils through efficient rotations’ (MASTER), commenced in 1992 to develop and demonstrate a cropping system that is economically viable on the highly acid soils of the traditional permanent pasture region in south-eastern Australia, so that their fertility is sustained or improved. There were 2 permanent pasture systems and 2 pasture–crop rotations, each with and without lime. This paper reports the effect of lime on crop production over the first cycle (6 years). On annual pasture–crop rotations, lime significantly increased the dry matter production at anthesis and grain yields of wheat (cv. Dollarbird) compared with the unlimed treatments. Averaged across years from 1992 to 1997 (excluding the severe drought year 1994), wheat crops produced 1.6 t/ha more grain on the limed treatments than on the unlimed treatments (3.6 v. 2.0 t/ha). On perennial pasture–crop rotations, the lime effects varied with crops grown at each phase and year. For example, despite being tolerant of acidity, oats (cv. Yarran) responded to lime in 1996. Likewise, triticale (cv. Abacus) responded to lime in 1997. Wheat (cv. Dollarbird) that is moderately tolerant to acidity responded to lime in phase 6 from 1992 to 1997 excluding 1994 (3.5 v. 1.7 t/ha). Acid-tolerant wheat varieties, triticale, and narrow-leaf lupins are considered the most viable crops for the soil and climatic conditions encountered in this high rainfall (5000—800 mm per annum) area of south-eastern Australia.


2015 ◽  
Vol 66 (4) ◽  
pp. 349 ◽  
Author(s):  
Julianne M. Lilley ◽  
Lindsay W. Bell ◽  
John A. Kirkegaard

Recent expansion of cropping into Australia’s high-rainfall zone (HRZ) has involved dual-purpose crops suited to long growing seasons that produce both forage and grain. Early adoption of dual-purpose cropping involved cereals; however, dual-purpose canola (Brassica napus) can provide grazing and grain and a break crop for cereals and grass-based pastures. Grain yield and grazing potential of canola (up until bud-visible stage) were simulated, using APSIM, for four canola cultivars at 13 locations across Australia’s HRZ over 50 years. The influence of sowing date (2-weekly sowing dates from early March to late June), nitrogen (N) availability at sowing (50, 150 and 250 kg N/ha), and crop density (20, 40, 60, 80 plants/m2) on forage and grain production was explored in a factorial combination with the four canola cultivars. The cultivars represented winter, winter × spring intermediate, slow spring, and fast spring cultivars, which differed in response to vernalisation and photoperiod. Overall, there was significant potential for dual-purpose use of winter and winter × spring cultivars in all regions across Australia’s HRZ. Mean simulated potential yields exceeded 4.0 t/ha at most locations, with highest mean simulated grain yields (4.5–5.0 t/ha) in southern Victoria and lower yields (3.3–4.0 t/ha) in central and northern New South Wales. Winter cultivars sown early (March–mid-April) provided most forage (>2000 dry sheep equivalent (DSE) grazing days/ha) at most locations because of the extended vegetative stage linked to the high vernalisation requirement. At locations with Mediterranean climates, the low frequency (<30% of years) of early sowing opportunities before mid-April limited the utility of winter cultivars. Winter × spring cultivars (not yet commercially available), which have an intermediate phenology, had a longer, more reliable sowing window, high grazing potential (up to 1800 DSE-days/ha) and high grain-yield potential. Spring cultivars provided less, but had commercially useful grazing opportunities (300–700 DSE-days/ha) and similar yields to early-sown cultivars. Significant unrealised potential for dual-purpose canola crops of winter × spring and slow spring cultivars was suggested in the south-west of Western Australia, on the Northern Tablelands and Slopes of New South Wales and in southern Queensland. The simulations emphasised the importance of early sowing, adequate N supply and sowing density to maximise grazing potential from dual-purpose crops.


1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.


2009 ◽  
Vol 49 (10) ◽  
pp. 759 ◽  
Author(s):  
Andrew D. Moore

Dual-purpose cereals are employed in the high-rainfall zone of southern Australia to provide additional winter forage. Recently there has been interest in applying this technology in the drier environments of South and Western Australia. It would therefore be useful to gain an understanding of the trade-offs and risks associated with grazing wheat crops in different locations. In this study the APSIM (Agricultural Production Systems Simulator) crop and soil simulation models were linked to the GRAZPLAN pasture and livestock models and used to examine the benefits and costs of grazing cereal crops at 21 locations spanning seven of the regions participating in the Grain & Graze research, development and extension program. A self-contained part of a mixed farm (an annual pasture–wheat rotation plus permanent pastures) supporting a breeding ewe enterprise was simulated. At each location the consequences were examined of: (i) replacing a spring wheat cultivar with a dual-purpose cultivar (cv. Wedgetail or Tennant) in 1 year of the rotation; and (ii) either grazing that crop in winter, or leaving it ungrazed. The frequency of early sowing opportunities enabling the use of a dual-purpose cultivar was high. When left ungrazed the dual-purpose cultivars yielded less grain on average (by 0.1–0.9 t/ha) than spring cultivars in Western Australia and the Eyre Peninsula but more (by 0.25–0.8 t/ha) in south-eastern Australia. Stocking rate and hence animal production per ha could be increased proportionately more when a dual-purpose cultivar was used for grazing; because of the adjustments to stocking rates, grazing of the wheat had little effect on lamb sale weights. Across locations, the relative reduction in wheat yield caused by grazing the wheats was proportional to the grazing pressure upon them. Any economic advantage of moving to a dual-purpose system is likely to arise mainly from the benefit to livestock production in Western Australia, but primarily from grain production in south-eastern Australia (including the Mallee region). Between years, the relationship between increased livestock production and decreased grain yield from grazing crops shifts widely; it may therefore be possible to identify flexible grazing rules that optimise this trade-off.


2015 ◽  
Vol 66 (4) ◽  
pp. 332 ◽  
Author(s):  
Lindsay W. Bell ◽  
Julianne M. Lilley ◽  
James R. Hunt ◽  
John A. Kirkegaard

Interest is growing in the potential to expand cropping into Australia’s high-rainfall zone (HRZ). Dual-purpose crops are suited to the longer growing seasons in these environments to provide both early grazing for livestock and later regrow to produce grain. Grain yield and grazing potential of wheats of four different maturity types were simulated over 50 years at 13 locations across Australia’s HRZ, and sowing date, nitrogen (N) availability and crop density effects were explored. Potential grazing days on wheat were obtained by simulating sheep grazing crops to Zadoks growth stage Z30 at 25 dry sheep equivalents (DSE)/ha. Optimal sowing dates for each maturity type at each location were matched to the flowering window during which risk of frost and heat stress was lowest. Overall, we found significant national potential for dual-purpose use of winter wheat cultivars across Australia’s HRZ, with opportunities identified in all regions. Simulated mean wheat yields exceeded 6 t/ha at most locations, with highest mean grain yields (8–10 t/ha) in southern Victoria, and lower yields (5–7 t/ha) in the south-west of Western Australia (WA) and central and northern New South Wales (NSW). Highest grazing days were from winter cultivars sown early (March–mid-April), which could provide 1700–3000 DSE-days/ha of grazing across HRZ locations; this was 2–3 times higher than could be obtained from grazing spring cultivars (200–800 DSE-days/ha). Sowing date was critical to maximise both grazing and grain yield potential from winter cultivars; each 1-week delay in sowing after 8 March reduced grazing by 200–250 DSE-days/ha and grain yield by 0.45 t/ha. However, in Mediterranean climates, a lower frequency of early sowing opportunities before mid-April (<30% of years) is likely to limit the potential to use winter cultivars. Prospects to graze shorter season spring cultivars that fit later sowing windows require further examination in south-west WA, the slopes of NSW and southern Queensland.


Sign in / Sign up

Export Citation Format

Share Document