Introgression of allelic diversity from genetically distinct variants of Brassica rapa into Brassica napus canola and inheritance of the B. rapa alleles

2018 ◽  
Vol 69 (1) ◽  
pp. 94 ◽  
Author(s):  
Rohit Attri ◽  
Habibur Rahman

Broadening of genetic diversity in spring oilseed Brassica napus L. (AACC, 2n = 38) canola is important for continued improvement of this crop. For this, the vast allelic diversity of the A genome of Brassica rapa L. (AA, 2n = 20) can be utilised. We investigated the prospect of developing canola-quality euploid B. napus lines carrying the alleles of B. rapa from F2 and BC1 (F1 × B. napus) populations of three B. napus × B. rapa interspecific crosses involving one B. napus and three genetically distinct B. rapa parents. In meiosis, the F1 AAC hybrid was expected to show normal segregation for the A genome chromosomes, whereas a range of C chromosomes from zero to nine was expected to be included in the gametes due to random segregation of this haploid set of chromosomes. Subsequent self-pollination, theoretically, should have eliminated the unpaired C chromosomes and resulted in a majority of B. rapa type. However, no B. rapa-type progeny were detected, and all progeny in the F8 conformed to be B. napus type. Correlation between parent and offspring generation, grown in greenhouse or field, was weak to moderate for seed glucosinolate content; however, the simpler genetic control of this trait, involving only the A genome loci, allowed the development of low-glucosinolate lines from this interspecific cross. Of the theoretical number of simple sequence repeat (SSR) marker alleles of B. rapa expected to be present in F4 and F8 populations, about 45% were detected in these populations, suggesting that the loss of these marker alleles occurred prior to the F4 generation. Loss of several SSR loci was also detected in these populations, which probably resulted from homoeologous pairing and rearrangements of the chromosomes of the A and C genomes. Genetic diversity analysis performed on the F8 progeny of two crosses showed that the two populations clustered into distinct groups, which demonstrates that they inherited SSR B. rapa alleles unique to each B. rapa parent. We conclude that B. rapa alleles from diverse sources can be readily incorporated into B. napus progeny by this interspecific crossing method.

2015 ◽  
Vol 95 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Habibur Rahman ◽  
Rick A. Bennett ◽  
Ginette Séguin-Swartz

Rahman, H., Bennett, R. A. and Séguin-Swartz, G. 2015. Broadening genetic diversity in Brassica napus canola: Development of canola-quality spring B. napus from B. napus × B. oleracea var. alboglabra interspecific crosses. Can. J. Plant Sci. 95: 29–41. The narrow genetic base in spring Brassica napus (AACC) canola is a limitation for continued improvement of this crop. This research focused on broadening of genetic diversity in spring canola by using B. oleracea (CC). Seeds of B. oleracea contain high levels of erucic acid and glucosinolates, which are undesired in canola. Therefore, inheritance of these traits and the prospect of developing spring canola with allelic diversity introgressed from B. oleracea were investigated in B. napus×B. oleracea interspecific progenies. Zero-erucic plants in F2generation occurred at a lower frequency than expected based on segregation involving only the C-genome erucic acid alleles. Selection in F2to F3focused on zero erucic acid, while focus in later generation was for low glucosinolate and B. napus plants. In the F6, 31% zero-erucic families had low glucosinolate content. Flow cytometry analysis of the F8families showed no significant difference from the B. napus parent. Genetic diversity analysis by using simple sequence repeat markers from the C-genome chromosomes showed that the F8families received up to 54% alleles from B. oleracea. The results demonstrate the feasibility of enriching genetic diversity in B. napus canola by using B. oleracea.


2005 ◽  
Vol 53 (4) ◽  
pp. 793-802 ◽  
Author(s):  
M. Hasan ◽  
F. Seyis ◽  
A. G. Badani ◽  
J. Pons-Kühnemann ◽  
W. Friedt ◽  
...  

1975 ◽  
Vol 55 (1) ◽  
pp. 61-70 ◽  
Author(s):  
J. M. BELL

Five swine experiments were conducted to evaluate rapeseed meal (RSM) of low glucosinolate content (Brassica napus L. cv. Bronowski). Two experiments involved 0, 25, 50, 75 and 100% substitution of either Bronowski meal or regular (B. campestris) meal for soybean meal or fishmeal used in the control diet. One experiment compared ad libitum-fed and partially restricted pigs. Another experiment involved digestibility studies, and the final one involved methionine and lysine supplementation. As the dietary levels of either Bronowski or regular RSM increased in the ration, protein digestion coefficients decreased from 79 and 80% to 76 and 78%, respectively, and energy coefficients decreased from 82% to 79 and 78%, respectively. The protein and energy digestibility coefficients for Bronowski RSM were estimated to be 68 and 59%; for regular RSM, 65 and 54%. With barley–wheat–RSM diets, pigs responded to 0.1% methionine, but not to lysine (P > 0.05). Pigs fed ad libitum consumed more Bronowski than regular RSM diet and performed as well as pigs fed soybean meal diets.


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227990
Author(s):  
Ruikun Chen ◽  
Ayako Shimono ◽  
Mitsuko Aono ◽  
Nobuyoshi Nakajima ◽  
Ryo Ohsawa ◽  
...  

2013 ◽  
Vol 5 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Özlem ÖZBEK ◽  
Betül Uçar GIDIK

In cultivated commercial crop species, genetic diversity tends to decrease because of the extensive breeding processes. Therefore, germplasm of commercial crop species, such as Brassica napus L. should be evaluated and the genotypes, which have higher genetic diversity index, should be addressed as potential parental cross materials in breeding programs. In this study, the genetic diversity was analysed by using randomly amplified polymorphic DNA analysis (RAPD) technique in nine Turkish commercial rapeseed varieties. The RAPD primers (10-mer oligonucleotides) produced 51 scorable loci, 31 loci of which were polymorphic (60.78%) and 20 loci (39.22%) were monomorphic The RAPD bands were scored as binary matrix data and were analysed using POPGENE version 1.32. At locus level, the values of genetic diversity within population (Hs) and total (HT) were 0.15 and 0.19 respectively. The genetic differentiation (GST) and the gene flow (Nm) values between the populations were 0.20 and 2.05 respectively. The mean number of alleles (na), the mean number of effective alleles (nae), and the mean value of genetic diversity (He) were 2.00, 1.26, and 0.19 respectively. According to Pearson’s correlation, multiple regression and principal component analyses, eco-geographical conditions in combination had significant effect on genetic indices of commercial B. napus L. varieties were discussed.


2014 ◽  
Vol 50 (No. 3) ◽  
pp. 216-225 ◽  
Author(s):  
L. Havlíčková ◽  
E. Jozová ◽  
A. Rychlá ◽  
M. Klíma ◽  
V. Kučera ◽  
...  

The genetic diversity of 94 accessions of winter oilseed rape (Brassica napus L.), representing past and contemporary material utilized in the Czech breeding programmes, was determined using microsatellites (SSRs), ISSRs and AFLPs. All three kinds of markers differed in the range of observed polymorphism and differentiated clearly each accession. Altogether 89 SSR, 1003 AFLP and 53 ISSR markers were evaluated. Their average rates of polymorphic bands were 100%, 53.9% and 90.6%, respectively, indicating high genetic diversity among the accessions. The greatest genetic distance was found by ISSRs (62.3%) whereas significantly lower distances of 49.4% in SSRs and 35.5% in AFLPs were observed. The genetic similarity matrix clearly distinguished all accessions. A set of the most distinct varieties was established. The analysis of the genetic pattern of the accessions indicated two groups comprising most of the modern Czech breeding materials, revealing a distinct shift in breeding. Surprisingly, molecular analyses did not support  breeders’ views about a narrow genetic base of the Czech breeding materials. The choice of appropriate technology for different aspects of germplasm evaluation is also discussed.


Sign in / Sign up

Export Citation Format

Share Document