Effect of defoliation height and redefoliation interval on regrowth and survival of perennial ryegrass (Lolium perenne) in subtropical dairy pastures

2003 ◽  
Vol 43 (2) ◽  
pp. 121 ◽  
Author(s):  
W. J. Fulkerson ◽  
K. Slack

A cut plot study was undertaken on the subtropical north coast of New South Wales, Australia, to determine the effect of defoliation height and redefoliation interval on dry matter yield and persistence of perennial ryegrass (Lolium perenne L.) pastures. The pasture was established on 7 April 1998 and plots were irrigated to replace evapotranspiration loss. The study was a completely randomised block design with plots of 2 by 1 m and treatments replicated 3 times. In winter (commencing 13 July) plots were defoliated to 20, 50 or 120 mm stubble height and either not redefoliated or redefoliated at 3, 6 or 3 and 6 days after initial defoliation. In spring (commencing 28 October) plots were redefoliated as for winter but only to 50 mm stubble height. After imposition of the redefoliation treatments, the plots were allowed to regrow until the non-redefoliated treatments had regrown 3 new leaves per tiller (subsequently referred to as a regrowth cycle) and then again defoliated (regrowth cycle 1). Plots cut in winter were then halved with one half (A plots) continuing to be subject to the redefoliation treatment for 4 more regrowth cycles until regrowth cycle 1 in spring was completed on 24 November, while the other half (B plots) were a carryover comparison of redefoliation treatment in regrowth cycle 1. Both A and B plots continued to be subjected to the same defoliation height treatments as imposed in regrowth cycle 1. From 24 November to 30 March 1999, plots were defoliated at 50 mm height each time 3 new leaves per tiller had regrown.Plots defoliated to 20 or 50 mm height during regrowth cycle 1 in winter yielded 21% more dry matter than plots cut to 120 mm height while redefoliation at 6 or 3 and at 6 days produced 14% less dry matter than plots not redefoliated or redefoliated at 3 days. Continued redefoliation at 6 days (comparison within A plots) reduced dry matter yield by 63% compared with no redefoliation or redefoliation at 3 days, but only in plots defoliated to 20 or 50 mm height.Plant density in the autumn (March 1999) of the year after establishment was positively related to defoliation height over regrowth cycles 1–5 of the previous year (35, 55 or 77 plants/m2 for plots defoliated at 20, 50 or 120�mm, respectively). Plant density of plots not redefoliated or redefoliated at 3 days over regrowth cycles 1–5 was 63% higher (70 plants/m2) than for the other treatment combination (43 plants/m2) at P = 0.07 level of significance.Plants cut to 20 or 50 mm stubble height at the commencement of regrowth cycle 1 in winter had a stubble water-soluble carbohydrate content of 5.2%, decreasing to 2.3% at day 6 post-defoliation. The water-soluble carbohydrate content of plants cut to 120 mm were initially higher at 8% and fell to only 6.4% by day 6.The redefoliation treatments imposed in this study were designed to simulate the regrazing of regrowth shoots in an extended grazing bout at various defoliation heights. The results confirm the negative effects of redefoliation, at 6 days in the winter to spring period, on both dry matter yield and plant survival over the subsequent summer in the subtropics. In contrast to winter, redefoliation in late spring had no effect on dry matter yield or plant density. The results also indicate a compromise between the benefits of more lax grazing for persistence and harder grazing for pasture utilisation.




2018 ◽  
Vol 58 (6) ◽  
pp. 1043 ◽  
Author(s):  
A. Jonker ◽  
G. Molano ◽  
E. Sandoval ◽  
P. S. Taylor ◽  
C. Antwi ◽  
...  

Elevated water-soluble carbohydrate (WSC) concentration in the diet may affect rumen fermentation and consequently reduce methane (CH4) emissions. The objective of the present study was to determine CH4 emissions from male sheep (8 per treatment) in respiration chambers for 48 h and fed either a conventional diploid (CRG), a high-sugar diploid (HSG) or a tetraploid (TRG) perennial ryegrass cultivar, each offered at 0.7 or 1.0 kg dry matter (DM)/day during periods in early spring 2013 (P1), early autumn 2014 (P2) and late spring 2014 (P3). There was a significant (P < 0.001) interaction between cultivar and period for CH4 yield (g/kg DM intake). In P1 yield was 9% lower (P = 0.007) for sheep fed HSG than for sheep fed CRG or TRG, in P2 yield was 16% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG or HSG, and in P3 yield was 15% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG, with HSG-fed sheep being intermediate and not significantly different from either CRG or TRG. Despite there being a cultivar × period interaction, overall, CH4 yield was lower for sheep fed HSG or TRG than for sheep fed CRG (P < 0.001). There were no cultivar × level of feed offer interactions and, overall, yield of CH4 was 9% higher (P = 0.003) for sheep offered 0.7 than for sheep offered 1.0 kg DM/day. In each period, one or other of the high-WSC diploid (HSG) or tetraploid cultivars (TRG) gave lower CH4 yields than did the control diploid (CRG), suggesting that CH4 yield is reduced by characteristics of these cultivars. However, the effect was not consistently associated with either cultivar and could not be attributed to higher forage water-soluble carbohydrate concentrations.



1996 ◽  
Vol 1996 ◽  
pp. 234-234
Author(s):  
D.I.H. Jones ◽  
C.P. Freeman ◽  
J.R. Newbold ◽  
A.R. Fychan ◽  
Elspeth Jones ◽  
...  

The dry matter (DM) and water soluble carbohydrate (WSC) concentrations of forage are the main characteristics influencing the course of silage fermentation. Knowledge of these parameters would enable decisions to be made both on the need for additive and the type of additive likely to be most effective. Moreover, the degree of wilt could also be followed in wilted crops. The present study was directed to assessing the relationship between the composition of the crop and the volume and composition of the expressed juice. The ultimate objective was the development of on-farm methodology for predicting the ensiling characteristics of crops.





2001 ◽  
Vol 56 (4) ◽  
pp. 383-394 ◽  
Author(s):  
L. A. Miller ◽  
J. M. Moorby ◽  
D. R. Davies ◽  
M. O. Humphreys ◽  
N. D. Scollan ◽  
...  


2011 ◽  
Vol 5 (1) ◽  
pp. 149-157 ◽  
Author(s):  
Kerrie Farrar ◽  
David N. Bryant ◽  
Lesley Turner ◽  
Joe A. Gallagher ◽  
Ann Thomas ◽  
...  


2001 ◽  
Vol 41 (1) ◽  
pp. 45 ◽  
Author(s):  
J. L. Jacobs ◽  
F. R. McKenzie ◽  
G. N. Ward ◽  
G. Kearney

A study in south-western Victoria determined effects of 3 perennial ryegrass (Lolium perenne L.) cultivars (Vedette, Impact and Nevis) with differing maturities, duration of lock up and nitrogen (N) application on the dry matter yield and nutritive characteristics of pasture for silage. Treatments were cultivar (3), N (0 and 50 kg N/ha) and duration of lock up (5–10 weeks) arranged in a completely randomised design in 3 by 5 m plots replicated 3 times. Plots were mown to a uniform height (5 cm) on 14 September 1998 (first day of lock up) and 1 week later N was applied as urea (46% N) at either 0 or 50 kg N/ha to the respective plots. Weekly sampling commenced on 19 October (week 5 of lock up), and continued until 23 November. For each treatment and harvest date, dry matter yield and botanical composition were determined, and samples of total pasture and the ryegrass fraction were collected and chemically analysed for dry matter digestibility, concentrations of crude protein, neutral detergent fibre, water-soluble carbohydrates and minerals. Metabolisable energy was derived from dry matter digestibility. All pasture types were predominantly ryegrass (>90%) with no differences in the nutritive characteristics of total pasture swards or the respective ryegrass fraction. Nitrogen at 50 kg N/ha significantly (P<0.05) increased dry matter yield for all cultivars. Metabolisable energy (MJ/kg DM) of the pasture declined with time for all treatments, with Vedette having a significantly (P<0.05) greater rate of decline than the other cultivars. Vedette reached early ear emergence about 3 weeks earlier (week 7) than the other cultivars. The harvestable metabolisable energy yield (MJ/ha) at ear emergence was highest for Impact, followed by Nevis and Vedette. In conclusion, there is potential to use later-maturing cultivars of ryegrass in south-eastern Australia to allow for later harvesting of forage for silage, while maintaining metabolisable energy and maximising dry matter yields. Furthermore, the use of N fertiliser can also increase dry matter yields without impinging on pasture quality provided the time between N application and harvest date does not exceed 5–6 weeks.



1973 ◽  
Vol 13 (61) ◽  
pp. 165 ◽  
Author(s):  
PJ Michell

Neutral detergent fibre (NDF), acid detergent fibre (ADF) and water soluble carbohydrate (WSC) levels were determined on 80 samples of known apparent dry matter digestibility (DMD) and voluntary intake of dry matter (DMI). The pastures consisted of regrowths of six species: Trifolium repens (white clover cv. Grasslands Huia), Lolium perenne x L. multiflorum (short rotation ryegrass c.v Grasslands Manawa), Lolium perenne (long rotation ryegrass cv. Grasslands Ariki), Lolium perenne (perennial ryegrass cv. Tasmania No. I), Dactylis glomerata (cocksfoot cv. Currie) and Dactylis glomerata (cocksfoot cv. Grasslands Apanui), cut eight times between May 1969 and August 1970. Overall, white clover had a lower NDF and a lower WSC content than the ryegrasses but both groups had similar ADF contents. Cocksfoots had higher NDF and ADF, and lower WSC contents than the ryegrasses. NDF and ADF could be used to predict the DMD of all species in all seasons with residual standard deviations (RSD) of 3.0 and 3.2 DMD units (per cent) respectively. No significant relations (P < 0.05) were present between DMD and WSC content. Seasonal differences were present in the relations between DMI and chemical composition. The RSD of the overall regressions of intake with NDF, ADF, and WSC contents were 9.3, 9.4, and 8.9 DMI units (g/day/kg0.75) respectively. Within seasons, DMI was best predicted by regressions with detergent fibre content and here the RSD had a range of 3.4 to 5.2 DMI units. Within species over all seasons, DMI was predicted best by regressions with WSC content and the RSD had a range of 5.7 to 7.9 DMI units. The usefulness of the chemical composition measurements in explaining the reason for the low intakes, previously found with winter pasture, is discussed.



Sign in / Sign up

Export Citation Format

Share Document