A lysimeter study of the water balance of border-check irrigated perennial pasture

2004 ◽  
Vol 44 (2) ◽  
pp. 151 ◽  
Author(s):  
M. Bethune ◽  
Q. J. Wang

The dairy industry is a major user of water in northern Victoria and southern New South Wales. Water is typically applied to pasture using the border-check irrigation system. The border-check system is largely gravity driven and thus energy efficient. However, deep drainage can potentially be high because the system allows only limited control over the depth of water applied in each irrigation event. For this reason, heavy soils are regarded as the most suitable for border-check irrigation. This study quantified net deep drainage (deep drainage less capillary rise) under border-check irrigated pasture on a Goulburn clay loam soil. Additionally, the study investigated the extent to which irrigation frequency and watertable conditions influence water use, dry matter production and deep drainage. The water balance and dry matter production were monitored over 2.5 years in a lysimeter facility in northern Victoria. The Goulburn clay loam is representative of the heavier textured soils used for border-check irrigation of pasture in northern Victoria. The average measured net deep drainage was 4 mm/year. This indicates that relatively small levels of net deep drainage can be achieved under well-managed border-check irrigation on a Goulburn clay loam soil. Net deep drainage losses were greatest following winter, when rainfall exceeded pasture water use for an extended period. Increasing the interval between irrigation events resulted in reduced plant water use, infiltration of irrigation water, rainfall runoff and pasture production. However, increasing the interval did not impact on net deep drainage or water use efficiency. Depth of watertable had a relatively minor impact on the water balance.

2007 ◽  
Vol 58 (12) ◽  
pp. 1159 ◽  
Author(s):  
P. R. Ward ◽  
D. J. M. Hall ◽  
S. F. Micin ◽  
K. Whisson ◽  
T. M. Willis ◽  
...  

In southern Australia, expanding dryland salinity is the result of increased deep drainage associated with widespread replacement of native perennial vegetation by annual agricultural crops and pastures. Although perennial pastures have been shown to assist in slowing salinisation, their adoption has been slow, and annual crops and pastures are likely to remain as the dominant land use for the foreseeable future. Therefore, understanding the water balance of annual crops and pastures, and how it can be manipulated, is important in trying to manage salinity. In this research we investigate the effect of varying levels of dry matter production on components of the water balance (soil evaporation, transpiration, soil water storage, and drainage) for annual crops at contrasting sites and soil types in south-western Australia. Dry matter production was controlled by fertiliser addition and crop rotation, and varied by a factor of up to 2, depending on seasonal conditions. Deep drainage was zero for most sites and years, but where it was greater than zero, there was no discernible effect due to production level. Out of a total of 14 site/year comparisons, the difference in soil water extraction associated with greater dry matter production averaged 5 mm, and was greater than 20 mm on only 1 occasion. However, high dry matter production was associated with greater transpiration, at the expense of soil evaporation. Manipulating dry matter production is unlikely to have a substantial effect on deep drainage and the expansion of dryland salinity in south-western Australia.


1990 ◽  
Vol 114 (3) ◽  
pp. 259-263 ◽  
Author(s):  
N. P. S. Yaduvanshi ◽  
D. V. Yadav

SUMMARYOn a clay loam soil, the cultivar Col 148, planted in spring 1987 at 57560 three-budded setts/ha received 0, 75, 100 and 150 kg N/ha and 0, 10, 20 and 30 t/ha fresh sulphitation press mud either separately or in combined applications, at 80% moisture. Separate applications of up to 150 kg N/ha and up to 30 t press mud/ha increased the cane biomass by 24·6% and 13·2%, respectively, whereas combined application increased it up to 38·1% more than in the control. A N concentration of 1·95–2·12% in the blades of leaves 3·6 from the top of the plant from tillering to the grand growth stage was necessary for maximum dry matter production. Sulphitation press mud enhanced uptake and availability of N and P to the crop and reduced soil pH. Application of 10 t press mud/ha saved 75 kg/ha of fertilizer N.


2011 ◽  
Vol 37 (8) ◽  
pp. 1432-1440
Author(s):  
Cheng-Yan ZHENG ◽  
Shi-Ming CUI ◽  
Dong WANG ◽  
Zhen-Wen YU ◽  
Yong-Li ZHANG ◽  
...  

1966 ◽  
Vol 67 (2) ◽  
pp. 199-210 ◽  
Author(s):  
A.G. Campbell

1. Net pasture dry matter production and available pasture dry matter were measured over 3 years in a small-scale replica of the study of the effects of dairy cow grazing management and stocking rate reported by McMeekan & Walshe (1963).2. The four treatments were(i) Controlled rotational grazing, light stocking rate (0.95 cows/acre).(ii) Controlled rotational grazing, heavy stocking rate (1.19 cows/acre).(iii) Uncontrolled, set stocked grazing, light stocking rate (0.95 cows/acre).(iv) Uncontrolled, set stocked grazing, heavy stocking rate (1.19 cows/acre).3. The pasture measurement technique employed measured net pasture production (gains through new growth minus losses from all sources). It is argued that this parameter, rather than absolute pasture production, governs the changes in the dry matter feed supply to the grazing animal.


2010 ◽  
Vol 61 (5) ◽  
pp. 353 ◽  
Author(s):  
L. L. Burkitt ◽  
D. J. Donaghy ◽  
P. J. Smethurst

Pasture is the cheapest source of feed for dairy cows, therefore, dairy pastures in Australia are intensively managed to maximise milk production and profits. Although soil testing commonly suggests that soils used for dairy pasture production have adequate supplies of phosphorus (P), many Australian dairy farmers still apply fertiliser P, often by applying smaller rates more frequently throughout the year. This study was designed to test the hypotheses that more frequent, but lower rates of P fertiliser applied strategically throughout the growing season have no effect on dry matter production and P concentration in perennial ryegrass (Lolium perenne L.), when soil extractable P concentrations are above the critical value reported in the literature. Three field sites were established on rain-fed dairy pasture soils ranging in P sorption capacity and with adequate soil P concentrations for maximising pasture production. Results showed that applied P fertiliser had no effect on pasture production across the 3 sites (P > 0.05), regardless of rate or the season in which the P was applied, confirming that no P fertiliser is required when soil extractable P concentrations are adequate. This finding challenges the viability of the current industry practice. In addition, applying P fertiliser as a single annual application in summer did not compromise pasture production at any of the 3 sites (P > 0.05), which supports the current environmental recommendations of applying P during drier conditions, when the risk of surface P runoff is generally lower. The current results also demonstrate that the short-term cessation of P fertiliser application may be a viable management option, as a minimal reduction in pasture production was measured over the experimental period.


Geoderma ◽  
2018 ◽  
Vol 327 ◽  
pp. 13-24 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Debashis Chakraborty ◽  
Pramila Aggarwal ◽  
Ranjan Bhattacharyya ◽  
Ravender Singh

1988 ◽  
Vol 15 (6) ◽  
pp. 815 ◽  
Author(s):  
GC Wright ◽  
KT Hubick ◽  
GD Farquhar

Variation in water-use efficiency (W, g of total dry matter produced/kg water used), and its correlation with cultivar isotope discrimination in leaves (Δ) was assessed in peanut plants grown in small canopies in the field. Plants were grown in separate minilysimeters that were both embedded in the ground and positioned above the crop. Differences among cultivars were found in W and � and the relationship between W and Δ was compared for plants grown in open and closed canopies. Genetic variability in W in plants grown in the field under non-limiting water conditions was demonstrated, with Tifton-8, of Virginia habit, having the highest W (3.71 g/kg) and Rangkasbitung, an Indonesian cultivar of Spanish habit, the lowest (2.46 g/ kg). Variability in W was due to variation in total dry matter production more than that of water use. A strong negative correlation was found between Δ and W, and also between Δ and total dry matter. The relationship between whole plant W, including roots, and Δ was stronger than that between shoot W, without roots and Δ. The improvement occurred because of variation among cultivars in the root to shoot ratio. This highlights the importance of taking account of root dry matter in studies concerning W. There were significant differences in W and Δ between plants in pots above-ground compared to pots in the ground, with above-ground plants having significantly lower values of both W and Δ. The ranking of W and Δ among cultivars was not affected by the contrast in environment, which suggests these parameters are under strong genetic control. Total above-ground dry matter yield at maturity was negatively correlated with Δ, while pod yield was not. It appears a negative association between harvest index and Δ may exist; however not all cultivars used in this and other studies follow this response. Both water-use efficiency, Wand total dry matter production are negatively correlated with Δ in leaves of peanut plants grown in small canopies in the field. Measurement of Δ may prove a useful trait for selecting cultivars with improved W and total dry matter yield under field conditions.


1997 ◽  
Vol 37 (2) ◽  
pp. 165 ◽  
Author(s):  
J. S. Dunbabin ◽  
I. H. Hume ◽  
M. E. Ireson

Summary. Perennial ryegrass–white clover swards were irrigated for 3 years every 50, 80 and 120 mm of crop evapotranspiration minus rainfall (ETc–R) and water ponded on the soil surface for either 4, 12 or 24 h at each irrigation. Pasture production and clover content were highly seasonal, peaking in spring and autumn. Frequent irrigation increased dry matter production by an average of 56%. When irrigating at 50 mm ETc–R, dry matter production was decreased by ponding water on plots, 17% for 12 h ponding and 14% if ponded for 24 h. However, when irrigating at an interval of 80 mm ETc–R ponding increased dry matter production by 7% for 12 h ponding and by 25% for 24 h ponding. Ponding also increased production at an irrigation interval of 120 mm ETc–R by 25% for 12 h ponding but only by 2.4% for 24 h ponding. While these increases in dry matter production are large in relative terms the absolute increase in production is small. More water infiltrated per irrigation at longer irrigation intervals, and at longer ponding times. Frequently irrigated, rapidly drained swards used irrigation water most efficiently. The small gain in dry matter production achieved by prolonging ponding at longer irrigation intervals is an inefficient use of water and likely to recharge regional groundwater systems. Oxygen diffusion rate measurements suggested that ponding for as short as 4 h was likely to cause waterlogging stresses and that these stresses were higher when irrigating frequently. The relative increase in waterlogging stress by extending the period of ponding from 4 to 24 h was small.


Sign in / Sign up

Export Citation Format

Share Document