Yield response of bananas to trickle irrigation

1981 ◽  
Vol 21 (111) ◽  
pp. 448 ◽  
Author(s):  
T Trochoulias ◽  
RD Murison

Supplementary trickle irrigation applied twice a week by single microtube at replacement rates of 0 (control), 20, 40, 60, 80, 100 and 120% of Class A pan evaporation (El from 1970 to 1976 increased bunch weight significantly (P= 0.02) above 40% E. Treatment 60% E gave a bunch weight of 27.6 kg compared with 25.7 for the control. The control, 20 and 40% treatments did not affect hand number from 1970 to 1976 while all other treatments increased hand number by 0.3 hands each year. Means of treatments over all years for fingers showed an annual increase of 4.6,4.0,5.8 and 5.0 fingers for 60,80,100 and 12O0Io treatments, respectively. Gravimetric sampling in 1974 showed the control plot had a lower water potential than other plots. There was little change in water potential in any of the other treatments. There was a significant linear decrease in water potential with increase in radius from the emitter. Root distribution studies showed that about 70% of the root systems in all treatments were concentrated in the upper 40 cm of soil. Forty per cent of the total root system was confined to a square, 60 x 60 cm, close to the base of the plant. Thus trickle irrigation with an emitter positioned near the base of the plant and a slow flow rate (3 litres/h) would reach most of the root system. Four out of the six years of the experiment were very wet (greater than 1700 mm rainfall). Only 29% of the total water over the 6 years in the 60% E treatment was provided by trickle irrigation. This experiment showed that 60% of Class A pan evaporation can be used as a reliable guide for the trickle irrigation of bananas on the East coast of Australia with free draining soils.

1972 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
RW Snaydon

Total water supply, expressed as a proportion of class A pan evaporation (Epan), and frequency of water application were varied independently during summer. The phosphorus concentration in the shoots of lucerne increased by 35% when the total water supply was increased from 0.1 to 1.0Epan; the nitrogen concentration was not significantly affected. The in vitro digestibility of leaf and stem fractions decreased with increasing total water supply, and the proportion of highly digestible fractions (leaf and flower) also decreased, so that total shoot digestibility decreased from 65% at 0.24 Epan to 55% at 0.58 Epan. Frequency of water application had no significant effect upon phosphorus or nitrogen concentration or in vitro digestibility. ____________________ *Part I, Aust. J. Agric. Res., 23: 239 (1972)


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1109b-1109
Author(s):  
Dariusz Swietlik

Root distribution of trickle–and flood-irrigated 4-year-old `Ray Red' grapefruit (Citrus paradisi Macf.) trees on sour orange (C. aurantium L.) rootstock was studied utilizing a trench method. Irrigation treatments were: flooding at 50% soil water depletion, trickle irrigation (2 drippers per tree) at 0.5 Class A Pan evaporation or at 0.02 MPa soil tension. Two trees from each treatment were studied. Five 2.5 m deep trenches positioned perpendicular or parallel to the tree row at 0.6, 2.1, or 4.3 m from the tree trunks were dug per tree. After washing off a 0.5 cm thick layer of soil from the trench wall, 0.5 cm long root sections were marked on a transparent plastic film attached to the wall. Many roots of trickle-irrigated trees grew past the trickle wetted zone and extended beyond 2.1 but not 4.3 m of the trunk. However, the roots of flood-irrigated trees were present at all distances from the trunk. From 26 to 51% of the roots of trickle–irrigated trees were found 90-230 cm deep, despite the clayey texture of the top 1 m of soil which was underlaid by a sandy clay loam. The root systems-of flood-irrigated trees were shallower and in most cases confined to the top 90 cm soil layer.


Irriga ◽  
2001 ◽  
Vol 6 (3) ◽  
pp. 120-127
Author(s):  
Reginaldo Ferreira Santos ◽  
Antonio Evaldo Klar

DISTRIBUIÇÃO DA EVAPORAÇÃO EM ESTUFA PLÁSTICA NA PRIMAVERA  Reginaldo Ferreira SantosCentro de Ciências Exatas e Tecnológica da UNIOESTE- CP 711CEP 858114-110, Cascavel, PR - Fone: 0XX45 2203155.  E-mail: [email protected] Evaldo KlarDepartamento de Engenharia Rural - Faculdade de Ciências Agronômica- UNESP - CEP 18603-970 - Botucatu, SP. CP: 237.  E-mail:  [email protected]  1  RESUMO O presente trabalho teve como objetivo avaliar a distribuição da evaporação no interior de uma estufa plástica, com uma cultura de pimentão, através da variabilidade espacial e comparar a evaporação dos microevaporímetros com os valores do Tanque classe "A". O experimento foi conduzido no Campus da Universidade Estadual Paulista - FCA/UNESP, no período de primavera, em estufa plástica de polietileno de baixa densidade (PEBD). Na distribuição da evaporação em estufa com orientação norte/sul, verificou-se que as maiores evaporações ocorreram nas extremidades sul e norte tendente ao lado oeste. Já as menores evaporações localizaram-se no centro. No período de primavera, a evaporação média nos microevaporímetros superestimou em 55% a evaporação determinada no Tanque classe "A". UNITERMOS: evaporação, geoestatística, estufa.  SANTOS, R.F, KLAR, A.E.  EVAPORATION DISTRIBUTION INSIDE A PLASTIC TUNNEL IN THE SPRING SEASON  2  ABSTRACT                 The main aim of this study was to verify the evaporation distribution inside a plastic tunnel, with pepper crop, oriented to north/south, through spatial variability and to compare Class A Pan evaporation to punctual evaporations of 40 equidistant microevaporimeters placed from 50cm the soil. The study was carried out at the College of Agricultural Sciences/UNESP, Botucatu – SP in the spring season.  The highest evaporation occurred next to north and to south sides of the tunnel, with tendency to west. Consequently, the lowest evaporations occurred at the center area. The microevaporimeter evaporations were 55% higher than those obtained from Class A Pan. KEYWORDS: evaporation distribution, microevaporimeter.


2021 ◽  
Vol 10 (8) ◽  
pp. 522
Author(s):  
Stavroula Dimitriadou ◽  
Konstantinos G. Nikolakopoulos

Actual evapotranspiration (ETa) has been insufficiently investigated in Greece. This study aimed to estimate annual ETa by empirical methods (Turc, modified Turc, and Coutagne) for the Peloponnese, Greece, a Mediterranean testbed, between 2016–2019, four of the warmest years since the preindustrial era, and compare them to MODIS ET. Furthermore, measurements of annual pan evaporation (Epan) were performed for two Class A pan stations in the Peloponnese with different reliefs and conditions. The empirical methods and statistical formulae (RMSD, MB, and NMB) were developed as models in ArcMap. The outcomes of the Turc method resembled MODIS ET ranges for all years, followed by those of Coutagne. The estimates by the modified Turc method were almost identical to MODIS ET. Therefore, the modified Turc method can be used as an alternative to MODIS ET (and vice versa) for the Peloponnese for 2016–2019. Moreover, the Epan at Patras University station (semiurban, low elevation) exhibited an upward trend resembling the trends of the empirical methods over the study years, whereas the Epan at Ladonas station (higher elevation, lakeside) required investigation on a monthly time scale. Additionally, the gradual decrease of pan-water icing at Ladonas in December (from 20 d in 2016 to 0 d in 2019) could imply an undergoing decrease in snowpack storage retention across the mountains of the Peloponnese.


2020 ◽  
pp. 11-21
Author(s):  
A. A. Sadiq

Aim: To measure and estimate the annual variability of water loss at Njuwa Lake using Class ‘A’ Pan Evaporation Method. Place and Duration of Study: Njuwa Lake in Yola South LGA, Adamawa State Nigeria between November, 2019 and May, 2020. Methodology: Direct measurements of morphometric characteristics of the lake were adopted using simple bathymetric method. Evaporation rates data and other related weather variable for the periods of ten (2007-2016) years were obtained from Upper Benue River Basin Development Authority located near the lake where the volume of water in the lake and the annual water loss were estimated using FAO estimate of water requirement procedures. Results: The results revealed that Njuwa Lake has morphometric characteristics of 1, 325 m average length, 180m average width, average depth 3.4 m, 238, 500 m2 of  surface area, 1,445 m shoreline length and 0.834 m shoreline development with an estimated water volume of  810, 900 m3 respectively. Similarly, highest Class ‘A’ Pan evaporation rates were found in the year 2011, 2007 and 2008 with the corresponding total annual values of 2688.06 mm, 2403.64 mm and 2389.63 mm having an estimated values of water lost from the lake of 641, 102.310 m3 (79.07%), 573, 268.140 m3(70.7%) and 569, 926.755 m3 (70.29 %) correspondingly. Conversely, the year 2013,2012 and 2014 were found with the lowest measured Pan evaporation rates (1585.00 mm, 1611.54 mm and 1663.27 mm) with an estimated water lost on the lake of about  378, 022.500 m3 (46.6 %), 384, 352.290 m3 (47.4 %) and 396, 689.895 m3 (48.9 %). Conclusion: The rate of water loss was through evaporation was estimated to be greater than the stored water in the Lake in most of the years under study which led to untimely drying of the lake thereby affecting the irrigation farming in the area. Valuable strategies of water use efficiency and irrigation scheduling for effective utilization of the limited stored water in the lake for sustainable food production should be therefore adopted. The research work, however, need further work to make a comparison between the class ‘A’ Pan method and other empirical models method to revalidate the reliability.


Sign in / Sign up

Export Citation Format

Share Document