soil water depletion
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 1)

HortScience ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ved Parkash ◽  
Sukhbir Singh ◽  
Manpreet Singh ◽  
Sanjit K. Deb ◽  
Glen L. Ritchie ◽  
...  

Water scarcity is increasing in the world, which is limiting crop production, especially in water-limited areas such as Southern High Plains of the United States. There is a need to adopt the irrigation management practices that can help to conserve water and sustain crop production in such water-limited areas. A 2-year field study was conducted during the summers of 2019 and 2020 to evaluate the effect of deficit irrigation levels and cultivars on root distribution pattern, soil water depletion, and water use efficiency (WUE) of cucumber (Cucumis sativus). The experiment was conducted in a split-plot design with four irrigation levels [100%, 80%, 60%, and 40% crop evapotranspiration (ETc)] as main plot factor and two cultivars (Poinsett 76 and Marketmore 76) as subplot factor with three replications. Results showed that root length density (RLD) was unaffected by the irrigation levels in 2019. In 2020, the RLD was comparable between 100% and 80% ETc, and it was significantly higher in 100% ETc than both 60% Eand 40% ETc. Root surface area density (RSAD) was not significantly different between 100% and 80% ETc, and it was significantly lower in both 60% and 40% ETc than 100% ETc in both years. Soil water depletion was the highest in 40% ETc followed by 60% and 80% ETc, and it was least in 100% ETc in both years. Evapotranspiration (ET) was the highest in 100% ETc followed by 80%, 60%, and 40% ETc. The WUE was not statistically different among the irrigation treatments. However, numerically, WUE was observed in the following order: 80% ETc > 100% ETc > 60% ETc > 40% ETc. The RLD, RSAD, soil water depletion, and ET were not significantly different between ‘Poinsett 76’ and ‘Marketmore 76’. However, fruit yield was significantly higher in ‘Poinsett 76’ than ‘Marketmore 76’, which resulted in higher WUE in Poinsett 76. It can be concluded that 80% ETc and Poinsett 76 cultivar can be adopted for higher crop water productivity and successful cucumber production in SHP.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1377
Author(s):  
Jeffrey D. Svedin ◽  
Ruth Kerry ◽  
Neil C. Hansen ◽  
Bryan G. Hopkins

Addressing within-field and within-season variability of crop water stress is critical for spatially variable irrigation. This study measures interactions between spatially variable soil properties and temporally variable crop water dynamics; and whether modelling soil water depletion is an effective approach to guide variable-rate irrigation (VRI). Energy and water balance equations were used to model crop water stress at 85 locations within a 22 ha field of winter wheat (Triticum aestivum L.) under uniform and spatially variable irrigation. Significant within-field variability of soil water holding capacity (SWHC; 145–360 mm 1.2 m−1), soil electrical conductivity (0.22–49 mS m−1), spring soil water (314–471 mm 1.2 m−1), and the onset of crop water stress were observed. Topographic features and modelled onset of crop water stress were significant predictors of crop yield while soil moisture at spring green-up, elevation, and soil electrical conductivity were significant predictors of the onset of crop water stress. These results show that modelling soil water depletion can be an effective scheduling tool in VRI. Irrigation zones and scheduling efforts should consider expanding to include temporally dynamic factors, including spring soil water content and the onset of crop water stress.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 212
Author(s):  
Lisa L. Baxter ◽  
Charles P. West ◽  
C. Philip Brown ◽  
Paul E. Green

The imminent depletion of the Ogallala Aquifer demands innovative cropping alternatives. Even though the benefits of cover crops are well recognized, adoption has been slow in the Southern High Plains (SHP) of the United States because of concerns that cover crops withdraw soil water to the detriment of the summer crops. This small plot experiment tested the interacting effects—production, soil water depletion of the cover crops, and subsequent teff [Eragrostis tef (Zucc.) Trotter] summer hay crops—of irrigation and tillage management with five cover crop types to identify low-risk cover crop practices in the drought-prone SHP. Dryland rye (Secale cereale L.) produced modest forage biomass (>1000 kg ha−1), even in a dry year, but it was found that light irrigation should be used to ensure adequate forage supply (>1200 kg ha−1) if winter grazing is desired. No-till management and timely termination of the winter cover crops were crucial to reducing the negative impact of winter crops on summer teff production. The results indicated no detriment to soil water content that was attributable to planting no-till cover crops compared with the conventional practice of winter fallow. Therefore, producers could take advantage of the soil-conserving attributes of high-quality winter forage cover crops without experiencing significant soil water depletion.


2021 ◽  
Vol 295 ◽  
pp. 01033
Author(s):  
Антон Назаров ◽  
Денис Ковтун ◽  
Stefan Talu

The rate of improvement in the comfort of the modern urban environment significantly reduces the negative factors, arising from violations of the ecological balance of the environment: pollution of air, soil, water, depletion of the ozone layer. One of the most important problems of the modern world is the ecology of the urban environment. The article considers the factors, that negatively affect living and non-living natural objects of cities. Green innovative technologies are analyzed, through which people strive to restore the environment - air, water, soil. Measures are proposed to improve the efficiency of the application of green technologies.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


2020 ◽  
Vol 454 (1-2) ◽  
pp. 261-281 ◽  
Author(s):  
Sathyanarayan Rao ◽  
Nolwenn Lesparre ◽  
Adrián Flores-Orozco ◽  
Florian Wagner ◽  
Andreas Kemna ◽  
...  

Abstract Background and aims Monitoring root water uptake dynamics under water deficit (WD) conditions in fields are crucial to assess plant drought tolerance. In this study, we investigate the ability of Electrical Resistivity Tomography (ERT) to capture specific soil water depletion induced by root water uptake. Methods A combination of surface and depth electrodes with a high spatial resolution (10 cm) was used to map 2-D changes of bulk soil electrical conductivity (EC) in an agronomic trial with different herbaceous species. A synthetic experiment was performed with a mechanistic model to assess the ability of the electrode configuration to discriminate abstraction patterns due to roots. The impact of root segments was incorporated in the forward electrical model using the power-law mixing model. Results The time-lapse analysis of the synthetic ERT experiment shows that different root water uptake patterns can be delineated for measurements collected under WD conditions but not under wet conditions. Three indices were found (depletion amount, maximum depth, and spread), which allow capturing plant-specific water signatures based moisture profile changes derived from EC profiles. When root electrical properties were incorporated in the synthetic experiments, it led to the wrong estimation of the amount of water depletion, but a correct ranking of plants depletion depth. When applied to the filed data, our indices showed that Cocksfoot and Ryegrass had shallower soil water depletion zones than white clover and white clover combined with Ryegrass. However, in terms of water depletion amount, Cocksfoot consumed the largest amount of water, followed by White Clover, Ryegrass+White Clover mixture, and Ryegrass. Conclusion ERT is a well-suited method for phenotyping root water uptake ability in field trials under WD conditions.


2020 ◽  
Vol 585 ◽  
pp. 124851 ◽  
Author(s):  
Jiamin Ge ◽  
Jun Fan ◽  
Hongyou Yuan ◽  
Xueting Yang ◽  
Mu Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document