Geothermal energy prospectivity of the Torrens Hinge Zone: evidence from new heat flow data

2009 ◽  
Vol 40 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Chris Matthews

1974 ◽  
Author(s):  
J.H. Sass ◽  
Robert J. Munroe


2013 ◽  
Vol 44 (2) ◽  
pp. 133-144 ◽  
Author(s):  
Chris Matthews ◽  
Graeme Beardsmore ◽  
Jim Driscoll ◽  
Nicky Pollington


1997 ◽  
Vol 269 (3-4) ◽  
pp. 345-346
Author(s):  
H.N. Pollack


1980 ◽  
Vol 62 (3) ◽  
pp. 649-660 ◽  
Author(s):  
Stephen P. Huestis
Keyword(s):  


Tectonics ◽  
1991 ◽  
Vol 10 (2) ◽  
pp. 325-344 ◽  
Author(s):  
Richard W. Saltus ◽  
Arthur H. Lachenbruch


2021 ◽  
Vol 23 (1) ◽  
pp. 195-211
Author(s):  
I.M. Okiyi ◽  
S.I. Ibeneme ◽  
E.Y. Obiora ◽  
S.O. Onyekuru ◽  
A.I. Selemo ◽  
...  

Residual aeromagnetic data of parts of Southeastern Nigerian sedimentary basin were reduced to the equator and subjected to magnetic vector inversion and spectral analysis. Average depths of source ensembles from spectral analysis were used to compute depth to magnetic tops (Z), base of the magnetic layer (Curie Point t Depth (CPD)), and estimate geothermal gradient and heat flow required for the evaluation of the geothermal resources of the study area. Results from spectral analysis showed depths to the top of the magnetic source ranging between 0.45 km and 1.90 km; centroid depths of 4 km - 7.87 km and CPD of between 6.15 km and 14.19 km. The CPD were used to estimate geothermal gradients which ranged from 20.3°C/km to 50.0°C/km 2 2 and corresponding heat flow values of 34.9 mW/m to 105 mW/m , utilizing an average thermal conductivity -1 -1 of 2.15 Wm k . Ezzagu (Ogboji), Amanator-Isu, Azuinyaba, Nkalagu, Amagunze, Nta-Nselle, Nnam, Akorfornor environs are situated within regions of high geothermal gradients (>38°C/Km) with models delineated beneath these regions using 3D Magnetic Vector Inversion, having dominant NW-SE and NE-SW trends at shallow and greater depths of <1km to >7 km bsl. Based on VES and 2D imaging models the geothermal system in Alok can be classified as Hot Dry Rock (HDR) type, which may likely have emanated from fracture systems. There is prospect for the development of geothermal energy in the study area. Keywords: Airborne Magnetics, Magnetic Vector Inversion, Geothermal Gradient, Heat Flow, Curie Point Depth, Geothermal Energy.



1977 ◽  
Author(s):  
J.H. Sass ◽  
J.P. Ziagos ◽  
H.A. Wollenberg ◽  
R.J. Munroe ◽  
D. E. di Somma ◽  
...  


Author(s):  
Sven Fuchs ◽  
Graeme Beardsmore ◽  
Paolo Chiozzi ◽  
Orlando Miguel Espinoza-Ojeda ◽  
Gianluca Gola ◽  
...  

Periodic revisions of the Global Heat Flow Database (GHFD) take place under the auspices of the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI). A growing number of heat-flow values, advances in scientific methods, digitization, and improvements in database technologies all warrant a revision of the structure of the GHFD that was last amended in 1976. We present a new structure for the GHFD, which will provide a basis for a reassessment and revision of the existing global heat-flow data set. The database fields within the new structure are described in detail to ensure a common understanding of the respective database entries. The new structure of the database takes advantage of today's possibilities for data management. It supports FAIR and open data principles, including interoperability with external data services, and links to DOI and IGSN numbers and other data resources (e.g., world geological map, world stratigraphic system, and International Ocean Drilling Program data). Aligned with this publication, a restructured version of the existing database is published, which provides a starting point for the upcoming collaborative process of data screening, quality control and revision. In parallel, the IHFC will work on criteria for a new quality scheme that will allow future users of the database to evaluate the quality of the collated heat-flow data based on specific criteria.



Sign in / Sign up

Export Citation Format

Share Document