Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species

2004 ◽  
Vol 31 (3) ◽  
pp. 255 ◽  
Author(s):  
Jianmin Guo ◽  
Craig M. Trotter

Recent studies have shown that the photochemical reflectance index (PRI), derived from narrow waveband reflectance at 531 and 570 nm, can be used as a remote measure of photosynthetic light-use efficiency (LUE). However, uncertainty remains as to the consistency of the relationship between PRI and LUE across species. In this study we examined the relationship between the PRI and various photosynthetic parameters for a group of species with varying photosynthetic capacity. At constant irradiance, for the species group as a whole, the PRI was well correlated with LUE (r2=0.58) and with several other photosynthetic parameters, but best correlated with the ratio of carotenoids to chlorophylls contents (Caro / Chl). Despite the interspecific trends observed, determination of light response functions for the PRI in relation to photosynthetic parameters revealed that species-specific relationships were clearly stronger. For example, r2>0.90 for species-level PRI / LUE relationships. Also, the species-specific light-response data show that the magnitude of the PRI can be related to the magnitude of the saturated irradiance and the rate of CO2 uptake. As demonstrated here, a light response function provides a simple yet precise approach for characterising the relationship between the PRI and photosynthetic parameters, which should assist with improved evaluation of the usefulness of the PRI as a generalised measure of LUE.

2018 ◽  
Vol 10 (8) ◽  
pp. 1202 ◽  
Author(s):  
Daniel Kováč ◽  
Petra Veselovská ◽  
Karel Klem ◽  
Kristýna Večeřová ◽  
Alexander Ač ◽  
...  

Hyperspectral reflectance is becoming more frequently used for measuring the functions and productivity of ecosystems. The purpose of this study was to re-evaluate the potential of the photochemical reflectance index (PRI) for evaluating physiological status of plants. This is needed because the reasons for variation in PRI and its relationships to physiological traits remain poorly understood. We examined the relationships between PRI and photosynthetic parameters in evergreen Norway spruce and deciduous European beech grown in controlled conditions during several consecutive periods of 10–12 days between which the irradiance and air temperature were changed stepwise. These regime changes induced significant changes in foliar biochemistry and physiology. The responses of PRI corresponded particularly to alterations in the actual quantum yield of photosystem II photochemistry (ΦPSII). Acclimation responses of both species led to loss of PRI sensitivity to light use efficiency (LUE). The procedure of measuring PRI at multiple irradiance-temperature conditions has been designed also for testing accuracy of ΔPRI in estimating LUE. A correction mechanism of subtracting daily measured PRI from early morning PRI has been performed to account for differences in photosynthetic pigments between irradiance-temperature regimes. Introducing ΔPRI, which provided a better estimate of non-photochemical quenching (NPQ) compared to PRI, also improved the accuracy of LUE estimation. Furthermore, ΔPRI was able to detect the effect of drought, which is poorly observable from PRI.


2010 ◽  
Vol 10 (5) ◽  
pp. 13337-13372
Author(s):  
X. Jing ◽  
J. Huang ◽  
G. Wang ◽  
K. Higuchi ◽  
J. Bi ◽  
...  

Abstract. The impacts of clouds and atmospheric aerosols on the terrestrial carbon cycle at semi-arid Loess Plateau in Northwest China are investigated, by using the observation data obtained at the SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) site. Daytime (solar elevation angles of larger than 50°) NEE of CO2 obtained during the midgrowing season (July–August) are analyzed with respect to variations in the diffuse radiation, cloud cover and aerosol optical depth (AOD). Results show a significant impact by clouds and aerosols on the CO2 uptake by the grassland (with smaller LAI values) located in a semi-arid region, quite different from areas covered by forests and crops. The light saturation levels in canopy are lower, with a value of about 434.8 W m−2. Thus, under overcast conditions of optically thick clouds, the CO2 uptake increases with increasing clearness index, and a maximum CO2 uptake and light use efficiency of vegetation occur with the clearness index of about 0.37 and lower air temperature. Under other sky conditions the CO2 uptake decreases with the cloudiness but the light use efficiency is enhanced, due to increase in the fraction of diffuse PAR. Additionally, under cloudy conditions, changes in the NEE of CO2 also result from the interactions of many environmental factors, especially the air temperature. In contrast to its response to changes in solar radiation, the carbon uptake shows a negative response to increased AOD. The reason for the difference in the response of the semi-arid grassland from that of the forest and crop lands may be due to the difference in the canopy's architectural structure.


Author(s):  
Peter A. Hawman ◽  
Deepak R. Mishra ◽  
Jessica L. O’Connell ◽  
David L. Cotten ◽  
Caroline R. Narron ◽  
...  

2015 ◽  
Vol 7 (12) ◽  
pp. 16938-16962 ◽  
Author(s):  
Qian Zhang ◽  
Weimin Ju ◽  
Jing Chen ◽  
Huimin Wang ◽  
Fengting Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document