Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate

2005 ◽  
Vol 32 (10) ◽  
pp. 945 ◽  
Author(s):  
Thomas R. Sinclair ◽  
Graeme L. Hammer ◽  
Erik J. van Oosterom

Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly (5–7%) by setting maximum transpiration rate at 0.4 mm h–1. However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than ∼450 g m–2, the maximum transpiration rate trait resulted in yield increases of 9–13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.

2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


1991 ◽  
Vol 71 (3) ◽  
pp. 695-702 ◽  
Author(s):  
J. M. Clarke ◽  
R. A. Richards ◽  
A. G. Condon

Increasing the water use efficiency (WUE) of wheat (Triticum spp.) has long been a goal in semiarid areas. Low rates of residual (cuticular) transpiration are thought to improve yield potential of wheat under dry conditions, although the linkage is tenuous. The objective of this work was to investigate the association of residual transpiration with water use, WUE, and leaf water status in hexaploid (T. aestivum L.) and tetraploid (T. turgidum L. var. durum) genotypes grown under two watering regimes in two glasshouse experiments. Single plants were grown in 0.1-m × 1-m (0.1-m × 0.5-m in exp. 2 low-stress treatment) PVC tubes filled with soil. The watering regimes consisted of weekly replenishment of water used (low stress), or addition of sufficient water to ensure plant survival (high stress). At anthesis, flag leaf residual transpiration (rate of water loss from excised leaves), stomatal conductance, relative water content (RWC), and osmotic potential (exp. 1 only) were measured. Water use was not correlated with residual transpiration rate in either experiment. Residual transpiration rate did not differ for the two stress treatments in exp. 1, but there were significant (P < 0.01) genotype by stress treatment interactions. Residual transpiration rate was not related to plant water status (leaf RWC or osmotic potential) as had been reported in other studies. Key words: Cuticular transpiration, water use efficiency, Triticum aestivum L., Triticum turgidum L. var. durum


1984 ◽  
Vol 35 (6) ◽  
pp. 765 ◽  
Author(s):  
RJ French ◽  
JE Schultz

Evidence is presented that water use efficiency and yield of wheat are reduced by insufficient leaf area and by inadequate content of nutrients in the top growth. Yields from field trials are compared with the potential yield, and a review is made of the limitations caused by weeds, the incidence of diseases and the harvest index. The data highlight the need for field experiments to define the evaporation and transpiration components of water use in each environment. They also indicate the need for multi-factorial treatments to overcome all yield limitations and thereby attain the potential yield.


2021 ◽  
Author(s):  
Fasih Ullah Haider ◽  
Muhammad Farooq ◽  
Muhammad Naveed ◽  
Sardar Alam Cheema ◽  
Noor ul Ain ◽  
...  

Abstract The synergistic effects of biochar and microorganisms on the adsorption of Cd and on cereal plant physiology remained unclear. Therefore, this experiment was performed to evaluate the combined effects of biochar pyrolyzed from (maize-straw (BC1), cow-manure (BC2), and poultry-manure (BC3), and microorganisms including (T. harzianum L. and B. subtilis L.), to evaluate, how incorporation of biochar positively influences microorganisms growth and nutrients uptake in plant, and how it mitigates under various Cd-stress levels (0, 10, and 30ppm). Cd2 (30 ppm) had the highest reduction in the intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate, which were 22.36, 34.50, 40.45, 20.66, 29.07, and 22.41% respectively lower than control Cd0 (0 ppm). Sole application BC, resulted in enhanced intercellular CO2, SPAD value, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate were recorded in BC2, which were 7.27, 20.54, 23.80, 5.96, 13.37, and 13.50% respectively greater as compared to control and decreased the Cd-concentration in root and shoot of maize by 34.07 and 32.53%, respectively as compared to control. Similarly, among sole microorganism’s inoculation, minimized the Cd-concentration in shoot, root, and soil by 23.77, 20.15, and 10.35% respectively than control. These results suggested that integrated application of cow manure biochar BC2 and inoculation of microorganisms MI3 as soil amendments had synergistic effects in improving the adsorption of nutrients and decreasing the Cd-uptake in maize, and enhancing the physiology of plant grown in Cd-polluted soils as opposed to using either biochar or inoculating microorganisms alone.


1999 ◽  
Vol 132 (2) ◽  
pp. 139-148 ◽  
Author(s):  
M. V. K. SIVAKUMAR ◽  
S. A. SALAAM

A comprehensive study was conducted over a 4-year period (1984–87) to evaluate the water use, growth and yield responses of pearl millet (Pennisetum glaucum (L.) R. Br.) cv. CIVT grown with and without fertilizer (30 kg P2O5 and 45 kg N ha−1) at the ICRISAT Sahelian Centre, Sadoré, Niger. Our study showed significant year and fertilizer effects on the growth and yield of millet at the study site. Observed year effects were primarily due to the variations in the amount and distribution of rainfall in relation to the potential demand for water. During 1984, 1985 and 1987, total rainfall was below the long term average, while in 1986 it was above average. While the onset of rains (relative to the average date of onset) was early from 1984 to 1986, in 1987 the sowings were delayed by as much as 33 days. Of all the four years, the separation between the treatments in the cumulative evaporation is most evident for 1984, which was a drought year with below-average rainfall in all the months from June to September. Cumulative evaporation patterns in 1985 and 1986 were similar because of regular rains and high average rainfall per rainy day from June to October. In 1987, sowings were delayed until 15 July and only 6·9 mm of rainfall was received per rainy day in July. Hence cumulative evaporation was initially low and showed a significant increase only after two significant rain events in early August. There was a large response to fertilizer in all the years as small additions of fertilizer phosphate increased the soluble phosphate in the soil. Fertilizer application resulted in a small increase in water use (7–14%) in all years except 1987. Increased yield due to the application of fertilizer was accompanied by an increase in the water-use efficiency (WUE) in all the four years with the largest increase in 1985. The beneficial effect of fertilizers could be attributed to the rapid early growth of leaves which can contribute to reduction of soil evaporative losses and increased WUE. Over the four seasons, average increase in the WUE due to the addition of fertilizer was 84%.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 110 ◽  
Author(s):  
Andreas Ropokis ◽  
Georgia Ntatsi ◽  
Constantinos Kittas ◽  
Nikolaos Katsoulas ◽  
Dimitrios Savvas

In areas characterized by mild winter climate, pepper is frequently cultivated in unheated greenhouses in which the temperature during the winter may drop to suboptimal levels. Under low temperature (LT) conditions, the uptake of nutrients may be altered in a different manner than that of the water and thus their uptake ratio, known as uptake concentration, may be different than in greenhouses with standard temperature (ST) conditions. In the present study, pepper plants of the cultivars “Sammy” and “Orangery”, self-grafted or grafted onto two commercial rootstocks (“Robusto” and “Terrano”), were cultivated in a greenhouse under either ST or LT temperature conditions. The aim of the study was to test the impact of grafting and greenhouse temperature on total yield, water use efficiency, and nutrient uptake. The LT regime reduced the yield by about 50% in “Sammy” and 33% in “Orangery”, irrespective of the grafting combination. Grafting of “Sammy” onto both “Robusto” and “Terrano” increased the total fruit yield by 39% and 34% compared with the self-grafted control, while grafting of “Orangery” increased the yield only when the rootstock was “Terrano”. The yield increase resulted exclusively from enhancement of the fruit number per plant. Both the water consumption and the water use efficiency were negatively affected by the LT regime, however the temperature effect interacted with the rootstock/scion combination. The LT increased the uptake concentrations (UC) of K, Ca, Mg, N, and Mn, while it decreased strongly that of P and slightly the UC of Fe and Zn. The UC of K and Mg were influenced by the rootstock/scion combination, however this effect interacted with the temperature regime. In contrast, the Ca, N, and P concentrations were not influenced by the grafting combination. The results of the present study show that the impact of grafting on yield and nutrient uptake in pepper depend not merely on the rootstock genotype, however on the rootstock/scion combination.


HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 433-436 ◽  
Author(s):  
Octavio Arquero ◽  
Diego Barranco ◽  
Manuel Benlloch

The effects of potassium (K) status and water availability in the growth medium on growth, water content, water-use efficiency and stomatal conductance was studied in mist-rooted `Chemlali de Sfax' olive (Olea europaea L.) cuttings grown in a perlite substrate. Potassium starvation produced dehydration of all parts of the plant, reduced shoot growth and water-use efficiency. By contrast, K starvation enhanced stomatal conductance in well-irrigated plants and, even more, in water-stressed plants. These results suggest that moderate K deficiency in olives may impair the plant's ability to regulate stomatal closure; this may account for the dehydration observed in K-starved plants, particularly in situations of water stress. This result is of great importance for agricultural practices of this crop, because K status, which may not be considered deficient, can cause disorders in olive trees.


HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1178-1187 ◽  
Author(s):  
D. Michael Glenn ◽  
Nicola Cooley ◽  
Rob Walker ◽  
Peter Clingeleffer ◽  
Krista Shellie

Water use efficiency (WUE) and response of grape vines (Vitis vinifera L. cvs. ‘Cabernet Sauvignon’, ‘Merlot’, and ‘Viognier’) to a particle film treatment (PFT) under varying levels of applied water were evaluated in Victoria, Australia, and southwestern Idaho. Vines that received the least amount of water had the warmest canopy or leaf surface temperature and the lowest (more negative) leaf water potential, stomatal conductance (gS), transpiration (E), and photosynthesis (A). Vines with plus-PFT had cooler leaf and canopy temperature than non-PFT vines; however, temperature difference resulting from irrigation was greater than that resulting from PFT. In well-watered vines, particle film application increased leaf water potential and lowered gS. Point-in-time measurements of WUE (A/E) and gS did not consistently correspond with seasonal estimates of WUE based on carbon isotope discrimination of leaf or shoot tissue. The response of vines with particle film to undergo stomatal closure and increase leaf water potential conserved water and enhanced WUE under non-limiting soil moisture conditions and the magnitude of response differed according to cultivar.


Sign in / Sign up

Export Citation Format

Share Document