LncRNA improves cold resistance of winter wheat by interacting with miR398

2020 ◽  
Vol 47 (6) ◽  
pp. 544
Author(s):  
Qiuwei Lu ◽  
Fuye Guo ◽  
Qinghua Xu ◽  
Jing Cang

One of the important functions of long non-coding RNA (lncRNA) is to be competing endogenous RNAs (ceRNAs). As miR398 is reported to respond to different stressors, it is necessary to explore its relationship with lncRNA in the cold resistance mechanism of winter wheat. Tae-miR398-precursor sequence was isolated from the winter wheat (Triticum aestivum). RLM-RACE verified that tae-miR398 cleaved its target CSD1. Quantitative detection at 5°C, –10°C and –25°C showed that the expression of tae-miR398 decreased in response to low temperatures, whereas CSD1 showed an opposite expression pattern. LncR9A, lncR117 and lncR616 were predicted and verified to interact with miR398. tae-miR398 and three lncRNAs were transferred into Arabidopsis thaliana respectively. The lncR9A were transferred into Brachypodium distachyom. Transgenic plants were cultivated at –8°C and assessed for the expression of malondialdehyde, chlorophyll, superoxide dismutase and miR398-lncRNA-target mRNA. The results demonstrate that tae-miR398 regulates low temperature tolerance by downregulating its target, CSD1. lncRNA regulates the expression of CSD1 indirectly by competitively binding miR398, which, in turn, affects the resistance of Dn1 to cold. miR398-regulation triggers a regulatory loop that is critical to cold stress tolerance in wheat. Our findings offer an improved strategy to crop plants with enhanced stress tolerance.

2000 ◽  
Vol 80 (4) ◽  
pp. 687-692 ◽  
Author(s):  
A. E. Limin ◽  
D. B. Fowler

Attempts to associate morphological or cytological characters with low-temperature (LT) tolerance in wheat (Triticum aestivum L. em. Thell.) and other members of the Triticeae group have met with ambiguous or contradictory results. Consequently no single character has emerged that can be considered a reliable predictor of LT tolerance. Twenty-six winter wheat cultivars of diverse origin were analyzed to determine the association among leaf length, width, area and cell size (guard cell length) and their association with LT stress tolerance. Measurements were made on plants grown at 4 °C and at 17 °C to determine if expression of LT tolerance associated characters was temperature dependent. At 4 °C, all individual leaf characters measured, including cell size, were very highly correlated with LT tolerance and with each other. Undisturbed plant height was not significantly correlated with LT tolerance until 5 wk of growth at 4 °C and reached its highest correlation at 10 wk when the plants were on average at their most prostrate state of growth. Growth at 17 °C resulted in much weaker relationships among all characters. At 4 °C short narrow leaves and small cell size were the best indicators of LT stress tolerance. Prostrate growth habit of plants grown at LT was also a good indicator of plant LT tolerance, but measurements of this character did not improve prediction equations based on leaf characters and cell size. Key words: Low-temperature tolerance, plant morphology, cell size, leaf characteristics, Triticum aestivum


2019 ◽  
Vol 20 (2) ◽  
pp. 100-114 ◽  
Author(s):  
Wei Tang ◽  
Wells A. Thompson

Background: MicroRNAs participate in many molecular mechanisms and signaling transduction pathways that are associated with plant stress tolerance by repressing expression of their target genes. However, how microRNAs enhance tolerance to low temperature stress in plant cells remains elusive. Objective: In this investigation, we demonstrated that overexpression of the rice microRNA528 (OsmiR528) increases cell viability, growth rate, antioxidants content, ascorbate peroxidase (APOX) activity, and superoxide dismutase (SOD) activity and decreases ion leakage rate and thiobarbituric acid reactive substances (TBARS) under low temperature stress in Arabidopsis (Arabidopsis thaliana), pine (Pinus elliottii), and rice (Oryza sativa). Methods: To investigate the potential mechanism of OsmiR528 in increasing cold stress tolerance, we examined expression of stress-associated MYB transcription factors OsGAMYB-like1, OsMYBS3, OsMYB4, OsMYB3R-2, OsMYB5, OsMYB59, OsMYB30, OsMYB1R, and OsMYB20 in rice cells by qRT-PCR. Results: Our experiments demonstrated that OsmiR528 decreases expression of transcription factor OsMYB30 by targeting a F-box domain containing protein gene (Os06g06050), which is a positive regulator of OsMYB30. In OsmiR528 transgenic rice, reduced OsMYB30 expression results in increased expression of BMY genes OsBMY2, OsBMY6, and OsBMY10. The transcript levels of the OsBMY2, OsBMY6, and OsBMY10 were elevated by OsMYB30 knockdown, but decreased by Os- MYB30 overexpression in OsmiR528 transgenic cell lines, suggesting that OsmiR528 increases low temperature tolerance by modulating expression of stress response-related transcription factor. Conclusion: Our experiments provide novel information in increasing our understanding in molecular mechanisms of microRNAs-associated low temperature tolerance and are valuable in plant molecular breeding from monocotyledonous, dicotyledonous, and gymnosperm plants.


Sign in / Sign up

Export Citation Format

Share Document