Corrigendum to: Depth-related composition and structuring of tropical riverine fish assemblages revealed by baited video

2017 ◽  
Vol 68 (10) ◽  
pp. 1976
Author(s):  
Stephen Cousins ◽  
Mark J. Kennard ◽  
Brendan C. Ebner

The aim of the present study was to determine whether boat-based deployment of remote underwater video cameras is effective for surveying fish assemblages in the deepest reaches of two large tropical rivers in north-eastern Australia. In addition, we compared fish assemblages recorded on baited versus unbaited cameras, and evaluated the sampling effort (duration of recording) required to estimate fish assemblages using remote underwater videos. We found that fish assemblages differed according to the depth, with statistically significant differences largely attributable to the prevalence of small-bodied species (Ambassis sp., Melanotaenia sp. and Pseudomugil signifer recorded in shallow (0.4–2.0m) and intermediate (2.1–4.9m) depths, and larger-bodied fish species (>10cm TL), such as Lutjanus argentimaculatus, Mesopristes argenteus and Caranx sexfasciatus, in deep water (>5.0m). Estimates of fish assemblage attributes generally stabilised after 60min recording duration, suggesting that interrogation of video footage beyond this duration may not be cost-effective. We conclude that depth is an important consideration when surveying large and deep river fish assemblages and that where water clarity is favourable, underwater video provides one of the means by which an assemblage can be investigated across the entire depth profile.

2017 ◽  
Vol 68 (10) ◽  
pp. 1965 ◽  
Author(s):  
Stephen Cousins ◽  
Mark J. Kennard ◽  
Brendan C. Ebner

The aim of the present study was to determine whether boat-based deployment of remote underwater video cameras is effective for surveying fish assemblages in the deepest reaches of two large tropical rivers in north-eastern Australia. In addition, we compared fish assemblages recorded on baited versus unbaited cameras, and evaluated the sampling effort (duration of recording) required to estimate fish assemblages using remote underwater videos. We found that fish assemblages differed according to the depth, with statistically significant differences largely attributable to the prevalence of small-bodied species (<10-cm total length, TL), such as Ambassis sp., Melanotaenia sp. and Pseudomugil signifer recorded in shallow (0.4–2.0m) and intermediate (2.1–4.9m) depths, and larger-bodied fish species (>10cm TL), such as Lutjanus argentimaculatus, Mesopristes argenteus and Caranx sexfasciatus, in deep water (>5.0m). Estimates of fish assemblage attributes generally stabilised after 60min recording duration, suggesting that interrogation of video footage beyond this duration may not be cost-effective. We conclude that depth is an important consideration when surveying large and deep river fish assemblages and that where water clarity is favourable, underwater video provides one of the means by which an assemblage can be investigated across the entire depth profile.


2021 ◽  
Author(s):  
E. F. Asbridge ◽  
D. Low Choy ◽  
B. Mackey ◽  
S. Serrao-Neumann ◽  
P. Taygfeld ◽  
...  

AbstractThe peri-urban interface (PUI) exhibits characteristic qualities of both urban and rural regions, and this complexity has meant that risk assessments and long-term planning for PUI are lagging, despite these areas representing new developing settlement frontiers. This study aims to address this knowledge gap by modifying an existing approach to quantify and assess flood risk. The risk triangle framework was used to map exposure, vulnerability and biophysical variables; however, in a novel application, the risk triangle framework was adapted by presuming that there is a variation in the degree of exposure, vulnerability and biophysical variables. Within Australia and globally, PUIs are often coastal, and flood risk associated with rainfall and coastal inundation poses considerable risk to communities in the PUI; these risks will be further exacerbated should projections of increasing frequency of extreme rainfall events and accelerating sea-level rise eventuate. An indicator-based approach using the risk triangle framework that maps flood hazard, exposure and vulnerability was used to integrate the biophysical and socio-economic flooding risk for communities in PUI of the St Georges Basin and Sussex Inlet catchments of south-eastern Australia. Integrating the flood risk triangle with future scenarios of demographic and climate change, and considering factors that contribute to PUI flood risk, facilitated the identification of planning strategies that would reduce the future rate of increase in flood risk. These planning strategies are useful for natural resource managers and land use planners across Australia and globally, who are tasked with balancing socio-economic prosperity for a changing population, whilst maintaining and enhancing ecosystem services and values. The indicator-based approach used in this study provides a cost-effective first-pass risk assessment and is a valuable tool for decision makers planning for flood risk across PUIs in NSW and globally.


2000 ◽  
Vol 51 (2) ◽  
pp. 165 ◽  
Author(s):  
Peter C. Gehrke ◽  
John H. Harris

Riverine fish in New South Wales were studied to examine longitudinal trends in species richness and to identify fish communities on a large spatial scale. Five replicate rivers of four types (montane, slopes, regulated lowland and unregulated lowland) were selected from North Coast, South Coast, Murray and Darling regions. Fishwere sampled during summer and winter in two consecutive years with standardized gear that maximized the range of species caught. The composition of fish communities varied among regions and river types, with little temporal variation. Distinct regional communities converged in montane reaches and diverged downstream. The fish fauna can be classified into North Coast, South Coast, Murray and Darling communities, with a distinct montane community at high elevations irrespective of the drainage division. Species richness increased downstream in both North Coast and South Coast regions by both replacement and the addition of new species. In contrast, species richness in the Darling and Murray regions reached a maximum in the slopes reaches and then declined, reflecting a loss of species in lowland reaches. The small number of species is typical of the freshwater fish faunas of similar climatic regions world-wide. Fish communities identified in this study form logical entities for fisheries management consistent with the ecosystem-focused, catchment-based approach to river management and water reform being adopted in Australia.


Phytotaxa ◽  
2013 ◽  
Vol 133 (1) ◽  
pp. 1 ◽  
Author(s):  
GLENN B. MCGREGOR

This volume provides the first detailed account of the Chroococcales of north-eastern Australia. It provides keys, morphological and ecological data for 6 families, 33 genera and 112 species, and photomicrographs and original illustrations to enable the identification of natural populations based on stable and recognizable characters observable with the aid of light microscopy. Distributional data are based on extensive surveys at 270 sites representing the major freshwater habitats including rivers and streams, palustrine and lacustrine wetlands, thermal springs, and man-made reservoirs in Queensland and the Northern Territory as well as a review of the Australian phycological literature. 


Sign in / Sign up

Export Citation Format

Share Document