Turbidity in the northern Great Barrier Reef lagoon in the wet season, March 1989

1994 ◽  
Vol 45 (4) ◽  
pp. 585 ◽  
Author(s):  
LJ Hamilton

In 1989, a typical wet season was experienced in northern Queensland, with low winds and long calm periods. Turbidity in upper waters of the Great Barrier Reef lagoon broadly had a simple distribution that could be modelled from bottom depth contour values alone, without introducing wind speed or bottom type. In the absence of major storm and cyclone events, this result appears to be general, based on the similarity between March 1989 survey data and Secchi disc climatology. The simple distribution arises because the main turbidity sources are riverine discharges, with little entrainment of bottom sediment into the upper column, except in shallower waters. Fresh, highly turbid riverine influxes are generally confined close inshore, with salinity and Secchi contours parallel to shore, forming cross-shelf gradients. A semi-quantitative relation was found between sea surface colour and Secchi disc depth. Examination of nephelometric turbidity stratification showed that satellite and Secchi data should be more useful for subsurface turbidity inference between Cooktown and Innisfail than in Princess Charlotte Bay, with horizontal and vertical stratifications, respectively, observed in those areas. Highest nephelometric turbidity was seen from Cooktown to Innisfail. Beam attenuation coefficient in oceanic waters outside the reef appeared to be dominated by absorption, with lagoon waters influenced by scattering. A method is suggested to enable approximate transfer of beam attenuation coefficient measured by a transmissometer operating at a single wavelength to beam attenuation coefficient at other wavelengths, using coincident measurements of Secchi disc depths made with filters.

1981 ◽  
Vol 32 (6) ◽  
pp. 981 ◽  
Author(s):  
TA Walker

In relatively shallow regions of the lagoon of the central Great Barrier Reef. phytoplankton chlorophyll a concentrations are dependent on intermittent resuspension of bottom sediment by wind-generated waves. This results in a strong inverse correlation between chlorophyll a levels and transparency over a period of time. Bottom resuspension and resettling cause a mide transparency range to occur at any given station. but the mean Secchi disc depth increases linearly with water depth across the lagoon.


1988 ◽  
Vol 39 (1) ◽  
pp. 19 ◽  
Author(s):  
GB Jones ◽  
FG Thomas

Studies carried out over several years on a tropical estuary, the Ross River Estuary, have shown that copper speciation is influenced by both terrestrial and marine humic substances. While terrestrial humic substances are mobilized by high freshwater runoff in the monsoonal season, Trichodesmium blooms mobilize high concentrations of marine humics to the inshore zone and increase labile forms of copper. The marine humics are more soluble than the terrestrial humics and persist in coastal waters of the Great Barrier Reef lagoon for many months prior to the wet season.


2012 ◽  
Vol 65 (4-9) ◽  
pp. 210-223 ◽  
Author(s):  
Thomas Schroeder ◽  
Michelle J. Devlin ◽  
Vittorio E. Brando ◽  
Arnold G. Dekker ◽  
Jon E. Brodie ◽  
...  

2012 ◽  
Vol 65 (4-9) ◽  
pp. 249-260 ◽  
Author(s):  
Britta Schaffelke ◽  
John Carleton ◽  
Michele Skuza ◽  
Irena Zagorskis ◽  
Miles J. Furnas

2021 ◽  
Vol 171 ◽  
pp. 112655
Author(s):  
G.L. McCloskey ◽  
R. Baheerathan ◽  
C. Dougall ◽  
R. Ellis ◽  
F.R. Bennett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document