beam attenuation coefficient
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
pp. 245-252
Author(s):  
V.I. Burenkov ◽  
◽  
V.A. Artemiev ◽  

Vertical profiles of the beam attenuation coefficient in different regions of the Barents Sea are analyzed. Data obtained show high space-time variability of seawater optical properties. In particular, the area affected by the river inflow (Pechora Sea) is distinguished. Very high values of the beam attenuation coefficient are observed in areas of coccolithophore blooms. There are a number of features associated with the flow of Atlantic waters into the Barents Sea. A close relationship between the seawater beam attenuation coefficient and total suspended matter concentration is shown. The corresponding regression equation is obtained.


2021 ◽  
Vol 9 ◽  
Author(s):  
Spyros Chaikalis ◽  
Constantine Parinos ◽  
Jürgen Möbius ◽  
Alexandra Gogou ◽  
Dimitris Velaoras ◽  
...  

A rich data set on particulate matter optical properties and parameters (beam attenuation coefficient, volume concentration, particle size and PSD slope), accompanied by measurements of biochemical indices (particulate organic carbon, particulate nitrogen and their stable isotopic composition) was obtained from the surface to deep waters across the Mediterranean Sea, in March-April 2018. A decrease of beam attenuation coefficients, total particle volume concentrations, particulate organic carbon and nitrogen concentrations was noted towards the eastern Mediterranean Sea (EMed) in comparison to the western Mediterranean Sea (WMed). LISST-derived optical properties were significantly correlated with water mass characteristics. Overall, the most turbid water mass identified in the Mediterranean Sea was the Surface Atlantic water (AW), and the most transparent was the Transitional Mediterranean Water (TMW) in the Cretan Sea, whereas a general decrease in particulate matter concentration is observed from the WMed towards the EMed. Relatively depleted δ13C-POC values in the particle pool of the open Mediterranean Sea can be attributed to contribution from terrestrial inputs, mainly via atmospheric deposition. Throughout the entire water column, a significant positive correlation between particle beam attenuation coefficient and particulate organic carbon concentration is observed in the open Mediterranean Sea. Such relationship suggests the predominance of organic particles with biogenic origin. POC concentration and particle median diameter D50 are significantly and negatively correlated both in the WMed and the EMed Sea, confirming that small particles are POC-rich. At depth, a prominent decrease of most measured parameters was observed, with the exception of particle median diameter that increased substantially in the EMed towards the deep sea, suggesting potentially enhanced aggregation processes. The low particle size distribution slope ξ observed in the EMed, corresponding to larger particle populations, supports the above notion. Basin-wide Rayleigh-type isotopic fractionation in vertical profiles of δ15N-PN across the Mediterranean Sea, underlines the differences in the trophic characters of the two sub-basins and highlights the role of circulation changes on biogeochemical parameters and the redistribution of particulate matter as a source of nutrients in the water column.


Author(s):  
V. I. Mankovsky ◽  
E. V. Mankovskaya ◽  
◽  

The article studies interrelations of the beam attenuation coefficient in different spectrum regions and spectral relations of beam attenuation coefficient to the Secchi depth in the coastal waters of the South Coast of Crimea. The data were used of in situ optical measurements obtained in 2008–2014 from a stationary oceanographic platform installed in the coastal waters of the South Coast of Crimea near the village of Katsiveli. According to the measurement data the relation was determined of the beam attenuation coefficient in eight parts of the spectrum in the wavelength range of 416–640 nm to the Secchi depth, which varies from 6 m to 17.5 m. Spectral distributions of the beam attenuation coefficient at different Secchi depths in coastal and deep sea waters were compared. As a result, it is concluded that the relationships between the spectral attenuation coefficient and the Secchi depth in coastal waters are not applicable to deep sea waters. It is shown that the feature of such equations in coastal waters is related to the higher concentration of fine suspended matter in them. Intercorrelation parameters were calculated of beam attenuation coefficients in different spectrum regions in coastal waters. High correlation coefficients make it possible to reconstruct distribution of the attenuation coefficient in a wide spectral range based on measurements at one wavelength in any spectrum region. The optimal spectral region to measure the beam attenuation coefficient is 468–527 nm.


Author(s):  
E. N. Korchemkina ◽  
E. V. Mankovskaya ◽  
R.I. Lee ◽  
◽  
◽  
...  

This paper presents and discusses the results of optical and biological measurements performed during the coccolithophore blooms. This study uses data of measurements from a stationary oceanographic platform (near the Southern coast of Crimea, 44°23' N, 33°59' E) in July 2012 (7–16 July) and in May 2017 (24–31 May), and data obtained during the R/V “Professor Vodyanitsky” expedition to the northern part of the Black Sea in June 2017 (14–30 June). Observation periods coincided with intensive blooms of coccolithophore. The measurements of the Secchi disk depth, light beam attenuation coefficient and reflectance coefficient, as well as biological determinations of the coccolithophore cells number in water samples, are considered and analyzed. In addition to field data, satellite information on the sea reflectance and backscattering are used. The beam attenuation coefficient, reflectance coefficient, backscattering coefficient and coccolithophore concentrations were increased as compared with no bloom period. The Secchi disk depth was abnormally low. The number of coccolithophore cells, according to biological data, varied from 150 thousand cells/L to 1.7 million cells/L and averaged 0.6 ± 0.4 million cells/L. According to these data, the estimated concentration of shed coccoliths was (1.46 ± 0.42) 1011 m-3 . The average coccolith concentrations calculated from satellite data were (1.29 ± 0.23) 1011 m-3 in July 2012, (1.32 ± 0.12) 1011 m-3 in May 2017, and (2.37 ± 0.69) 1011 m-3 in June 2017. During blooms, high variability was observed not only in optical properties, but also in biological properties, and the relationship between their spatial distribution was weak. From the optical point of view, the indicator of bloom is the number of coccoliths, not cells, which can lead to an incorrect description of the biological situation.


2020 ◽  
Vol 10 (14) ◽  
pp. 4777
Author(s):  
Peter C. Chu ◽  
Chenwu Fan

Underwater wireless optical communications (UWOCs) have attracted considerable attention in recent years as an alternative means for acoustic communication. However, optical path loss of light propagation from attenuation is in large part due to absorption and scattering in various water conditions. Identification of environmental effects, especially tropical storms on underwater optical path loss, is key to the success of using optics for UWOCs. Underwater inherent optical properties (IOPs), such as the beam attenuation coefficient for 470 nm light in the western North Pacific Ocean, were measured from U.S. Naval Oceanographic Office Seagliders deployed after Super Typhoon Guchol’s (June 7–20, 2012) passage from June 25 to June 30, 2012 and without any typhoon passage from January 9 to February 28, 2014. The two observed sets (with and without the super typhoon) of IOPs are taken as input for a recently developed radiative transfer equation solver. The simulated normalized received powers for the two durations show a large impact of typhoon passage on UWOCs.


Author(s):  
Peter C. Chu ◽  
Chenwu Fan

Underwater wireless optical communications (UWOC) have attracted considerable attention in recent years as an alternative means for acoustic communication. However, optical path loss of light propagation from attenuation is large due to absorption and scattering in various water conditions. Identification of environmental effects especially tropical storms on underwater optical path loss is the key to the success of using optics for UWOC. Underwater inherent optical properties (IOPs) such as the beam attenuation coefficient for 470 nm light in the western North Pacific Ocean were measured from the U.S. Naval Oceanographic Office sea gliders with being deployed after Super Typhoon Guchol (7-20 June 2012)‘s passage during 25-30 June 2012 and no any typhoon passage during 9 January – 28 February 2014. The observed two sets (with and without super typhoon) of IOPs are taken as input into a recently developed Radiative Transfer Equation solver. The simulated normalized received powers for the two durations show large impact of typhoon passage on UWOC.


Sign in / Sign up

Export Citation Format

Share Document