T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis

1998 ◽  
Vol 25 (1) ◽  
pp. 125 ◽  
Author(s):  
Kim Richardson ◽  
Sarah Fowler ◽  
Carly Pullen ◽  
Caryl Skelton ◽  
Bret Morris ◽  
...  

Gene tagging with insertional mutagens greatly facilitates the isolation of novel genes. A new collection of Arabidopsis T-DNA tag insertion lines (n=2165) was generated by in planta transformation. Whole plants were vacuum-infiltrated in a suspension of Agrobacterium carrying the pGKB5 tagging vector. The efficiency of transformation increased with addition of the surfactant Silwet L-77 (0.005% v/v) to the Agrobacterium suspension. Visual screens of the T-DNA lines identified two mutants with floral defects. Allelism tests suggested that a mutation in the GIGANTEA gene was responsible for the late-flowering phenotype of one of the mutants. Linkage analysis indicated that the GIGANTEA gene was tagged in this mutant.

1998 ◽  
Vol 25 (1) ◽  
pp. I
Author(s):  
Laurie Martinelli

Gene tagging with insertional mutagens greatly facilitates the isolation of novel genes. A new collection of Arabidopsis T-DNA tag insertion lines (n=2165) was generated by in planta transformation. Whole plants were vacuum-infiltrated in a suspension of Agrobacterium carrying the pGKB5 tagging vector. The efficiency of transformation increased with addition of the surfactant Silwet L-77 (0.005% v/v) to the Agrobacterium suspension. Visual screens of the T-DNA lines identified two mutants with floral defects. Allelism tests suggested that a mutation in the GIGANTEA gene was responsible for the late-flowering phenotype of one of the mutants. Linkage analysis indicated that the GIGANTEA gene was tagged in this mutant.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Ratna Preeti Kaur ◽  
Sugani Devi

In planta transformation has been established as an innovative and simple technique involving direct transformation of plant parts without involving the tedious tissue culture step. Methodologies of in planta transformation involve different plant parts and strategies. Agrobacterium strain carrying the gene of interest is targeted to the specific plant part either directly or in the induction medium. Vacuum infiltration is sometimes used to facilitate foreign gene integration. Initial studies of this novel technique involved treatment of whole plants with the inoculum, and later shifted to treatments of shoot tips and floral parts and finally the female reproductive parts have been targeted. Zygotes, embryos and seeds have recently been used extensively yielding successful transformation. The method is simple, convenient and overcomes the problem of tissue culture induced genetic variability in the transformants. The review traces the origin and development in the in planta methodologies used over the past and the various parameters considered by the workers for increased effectiveness viz. developmental stages, Agrobacterium stain, surfactant, induction medium etc., in the various crops compiled. Based on the review it may be inferred that there is immense potential in planta transformation, and the ease of regeneration and selection of transformants in the methods described, can be utilized for crop improvement.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
S. F. Prewitt ◽  
A. Shalit-Kaneh ◽  
S. N. Maximova ◽  
M. J. Guiltinan

Abstract Background In angiosperms the transition to flowering is controlled by a complex set of interacting networks integrating a range of developmental, physiological, and environmental factors optimizing transition time for maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways. To characterize the molecular mechanisms involved in controlling cacao flowering time, we have characterized a cacao candidate florigen gene, TcFLOWERING LOCUS T (TcFT). Understanding how this conserved flowering time regulator affects cacao plant’s transition to flowering could lead to strategies to accelerate cacao breeding. Results BLAST searches of cacao genome reference assemblies identified seven candidate members of the CENTRORADIALIS/TERMINAL FLOWER1/SELF PRUNING gene family including a single florigen candidate. cDNA encoding the predicted cacao florigen was cloned and functionally tested by transgenic genetic complementation in the Arabidopsis ft-10 mutant. Transgenic expression of the candidate TcFT cDNA in late flowering Arabidopsis ft-10 partially rescues the mutant to wild-type flowering time. Gene expression studies reveal that TcFT is spatially and temporally expressed in a manner similar to that found in Arabidopsis, specifically, TcFT mRNA is shown to be both developmentally and diurnally regulated in leaves and is most abundant in floral tissues. Finally, to test interspecies compatibility of florigens, we transformed cacao tissues with AtFT resulting in the remarkable formation of flowers in tissue culture. The morphology of these in vitro flowers is normal, and they produce pollen that germinates in vitro with high rates. Conclusion We have identified the cacao CETS gene family, central to developmental regulation in angiosperms. The role of the cacao’s single FT-like gene (TcFT) as a general regulator of determinate growth in cacao was demonstrated by functional complementation of Arabidopsis ft-10 late-flowering mutant and through gene expression analysis. In addition, overexpression of AtFT in cacao resulted in precocious flowering in cacao tissue culture demonstrating the highly conserved function of FT and the mechanisms controlling flowering in cacao.


2011 ◽  
Vol 129 (4) ◽  
pp. 898-903 ◽  
Author(s):  
Arthikala Manoj Kumar ◽  
Kalpana N. Reddy ◽  
M. Manjulatha ◽  
Elizabeth S. Arellano ◽  
Rohini Sreevathsa ◽  
...  

1981 ◽  
Vol 32 (5) ◽  
pp. 793 ◽  
Author(s):  
GM Halloran ◽  
AL Pennell

A number of Trigonella species were examined for their possible use in Australian environments. There was a wide variability in flowering time in Trigonella. Under an outdoor autumn sowing the range in flowering time was comparable with that found within early- to late-flowering Australian commercial cultivars of subterranean clover. The upper level of vernalization response was much lower in Trigonella than in subterranean clover. Good prospects exist within Trigonella for selecting genotypes with close adaptation (in terms of appropriate developmental patterns) to a range of Australian environments, a range at least as wide as that now occupied by subterranean clover and annual medic.


Sign in / Sign up

Export Citation Format

Share Document