An Exploration of the Carbon Economy of the Tobacco Plant. II. Patterns of Leaf Growth and Dry Matter Partitioning

1974 ◽  
Vol 1 (2) ◽  
pp. 271 ◽  
Author(s):  
C Hackett ◽  
HM Rawson

As a sequel to calculations made in Part I about the carbon economy of the tobacco plant, a short-day variety of tobacco (Nicotiana tabacum L. cv. Mammoth 17L) was grown at controlled temperatures in two contrasting photoperiods (13 and 9 h) and the growth and gas exchange of the plants were determined as frequently as possible during the period 30–100 days from sowing. This paper describes aspects of the leaf emergence, leaf expansion, floral development, and dry matter partitioning in these plants. Part III will present the gas-exchange data. The most striking finding from the growth data concerned leaf expansion. The application of curve-fitting techniques showed that the expansion of each leaf studied could be accurately described by the Gompertz growth function, which implied that the maximum absolute rate of expansion had been achieved quite early in the leaf's development, at about 37% of full expansion. Furthermore, in all but the juvenile leaves, the time-spread of expansion was similar, despite up to 10-fold differences in the final area of the leaves due to photoperiod and position on the stem. Other relationships observed in the data seemed of fundamental interest. Attention is drawn (1) to the smooth progression in final leaf size with progress up the stem, and (2) to the changes with time in the ratio of the relative growth rates of the major plant parts, but whether these relationships, and those between leaf expansion and time, are typical of tobacco will remain uncertain until comparable studies are performed. * Part I, Aust. J. Biol. Sci., 1973, 26, 1057–71.

HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Justine E. Vanden Heuvel ◽  
John T.A. Proctor ◽  
K. Helen Fisher ◽  
J. Alan Sullivan

In order to gain an understanding of the capacity of severely shaded leaves to be productive in dense canopies, the effects of increased shading on morphology, dry-matter partitioning, and whole-plant net carbon exchange rate (NCER) were investigated on greenhouse-grown Vitis vinifera L. `Chardonnay' grapevines. Vines were subjected to whole-plant shading levels of 0%, 54%, 90%, and 99% of direct sun 3 weeks after potting. Data were collected 8 to 10 weeks after potting. Nonlinear regression was used to investigate the relationship of leaf morphological traits and organ dry weights to increased shading. Leaf size was maintained with increased shading to approximately the 90% shading level, while leaf fresh weight, volume, density, and thickness were immediately reduced with increased shading. Root dry weight was most affected by increased shading, and root to shoot ratio was reduced. When nonlinear regressions were produced for light response curves, light compensation point was reduced by approximately 49% by moderate shading, and 61% by severe shading. Shaded leaves approached the asymptote of the light response curve more quickly, and had reduced dark respiration rates, indicating that the morphological compensation responses by the vine allow shaded leaves to use available light more efficiently. However, the long-term ramifications of reduced root growth in the current year on vines with shaded leaves may be significant.


1974 ◽  
Vol 1 (4) ◽  
pp. 551 ◽  
Author(s):  
HM Rawson ◽  
C Hackett

Tobacco plants were grown in sunlit, controlled-environment cabinets, and their growth and gas exchange were followed from shortly after emergence to 90 days from sowing. There were three major findings: 1. Summed over all leaves, dark respiration remained at 6-7% of net photosynthesis for a lengthy period (50-90 days from sowing), but in younger plants the fraction reached as high as 18%. 2. In the 12 leaves monitored from their emergence to full expansion, net photosynthesis (Pn) followed a similar time course, even though the first and last leaves in this group emerged nearly 40 days apart and there was a 100-fold difference in final area (Amax). For a sequence of nine of these leaves, the agreement was so close that their photosynthetic histories could be represented by a single relationship with developmental time. Peak Pn was consistently attained at about 37% Amax, when peak dA/dt occurred, and it was held for only 3-5 days. The subsequent decline reduced Pn to less than one-third of peak Pn at Amax. 3. Data for the nitrogen content (w/w) of the leaves after 37% Amax could be combined in a manner similar to that described for Pn. Pn, nitrogen content and leaf ontogeny were therefore directly related after peak Pn had been attained. The bearing of these findings on the study of photosynthesis in dicotyledonous species is discussed.


2001 ◽  
Vol 28 (5) ◽  
pp. 417 ◽  
Author(s):  
Tina Botwright ◽  
Greg Rebetzke ◽  
Tony Condon ◽  
Richard Richards

Coleoptile length in wheat (Triticum aestivum L.) can be affected by several factors, including genotype, height-reducing genes and environmental factors, including temperature. There is little information on how these factors influence rate and duration of coleoptile growth to determine final coleoptile length in wheat. Coleoptile growth was determined for eight genotypes representing four different height-reducing genes: gibberellic acid (GA)-sensitive, standard height (rht), GA-sensitive semidwarfs (Rht8); and GA-insensitive, semidwarfs (Rht2). These were grown in the dark at three temperatures (12, 16 and 20˚C) and coleoptile lengths measured every 12˚Cd. Logistic growth curves were fitted to coleoptile growth data for each genotype with thermal time as the explanatory variable. Differences in final coleoptile length were largely attributable to differences in rate of coleoptile elongation although there were small differences in duration of growth between genotypes. The longer coleoptile of the rht wheats was achieved through the fastest rate of coleoptile elongation. Coleoptiles of Rht8 wheats were equivalent in final length to rht wheats at 107 mm, but achieved this through a slower growth rate (2.10 mm ˚Cd–1) combined with an increased duration of growth (57˚Cd). In contrast, the shorter coleoptiles of Rht2 wheats resulted from 25% slower rates of elongation than either Rht8 or rht. There were no interactions between the components of coleoptile growth and temperature, although a longer duration and a fast rate of growth combined to increase coleoptile length at 12˚C compared with either 16 or 20˚C. In a second experiment, dry matter partitioning and length of coleoptile, subcrown internode (SCI), shoot and roots were determined after 200˚Cd. In Rht2, the SCI and shoot were short while roots were longer than either Rht8 or rht. Reduced dry matter (DM) partitioning to the coleoptile and SCI and DM retention in the seed reduced the endosperm-use efficiency (EUE) of Rht compared with rht. EUE was poor also in Rht8, apparently through increased respiratory losses. Reduced partitioning of dry matter to coleoptiles and the SCI in Rht2 increased the root : shoot ratio compared with rht or Rht8. We conclude that either increased rate or duration of coleoptile growth could be targeted in a breeding program that aims to increase coleoptile length in wheat.


2012 ◽  
Vol 134 ◽  
pp. 72-78 ◽  
Author(s):  
Claudio Di Vaio ◽  
Francesco Paolo Marra ◽  
Giampiero Scaglione ◽  
Michele La Mantia ◽  
Tiziano Caruso

2020 ◽  
Vol 8 (5) ◽  
pp. 2667-2669
Author(s):  
Samarth Tewari ◽  
Gurvinder Singh ◽  
Avikal Kumar ◽  
Narendra Bhandari ◽  
Saurabh Gangola

2020 ◽  
Vol 207 (1) ◽  
pp. 120-127
Author(s):  
Yusuke Masuya ◽  
Etsushi Kumagai ◽  
Maya Matsunami ◽  
Hiroyuki Shimono

Sign in / Sign up

Export Citation Format

Share Document