The effect of different vigour olive clones on growth, dry matter partitioning and gas exchange under water deficit

2012 ◽  
Vol 134 ◽  
pp. 72-78 ◽  
Author(s):  
Claudio Di Vaio ◽  
Francesco Paolo Marra ◽  
Giampiero Scaglione ◽  
Michele La Mantia ◽  
Tiziano Caruso
1974 ◽  
Vol 1 (2) ◽  
pp. 271 ◽  
Author(s):  
C Hackett ◽  
HM Rawson

As a sequel to calculations made in Part I about the carbon economy of the tobacco plant, a short-day variety of tobacco (Nicotiana tabacum L. cv. Mammoth 17L) was grown at controlled temperatures in two contrasting photoperiods (13 and 9 h) and the growth and gas exchange of the plants were determined as frequently as possible during the period 30–100 days from sowing. This paper describes aspects of the leaf emergence, leaf expansion, floral development, and dry matter partitioning in these plants. Part III will present the gas-exchange data. The most striking finding from the growth data concerned leaf expansion. The application of curve-fitting techniques showed that the expansion of each leaf studied could be accurately described by the Gompertz growth function, which implied that the maximum absolute rate of expansion had been achieved quite early in the leaf's development, at about 37% of full expansion. Furthermore, in all but the juvenile leaves, the time-spread of expansion was similar, despite up to 10-fold differences in the final area of the leaves due to photoperiod and position on the stem. Other relationships observed in the data seemed of fundamental interest. Attention is drawn (1) to the smooth progression in final leaf size with progress up the stem, and (2) to the changes with time in the ratio of the relative growth rates of the major plant parts, but whether these relationships, and those between leaf expansion and time, are typical of tobacco will remain uncertain until comparable studies are performed. * Part I, Aust. J. Biol. Sci., 1973, 26, 1057–71.


2020 ◽  
Vol 8 (5) ◽  
pp. 2667-2669
Author(s):  
Samarth Tewari ◽  
Gurvinder Singh ◽  
Avikal Kumar ◽  
Narendra Bhandari ◽  
Saurabh Gangola

2020 ◽  
Vol 207 (1) ◽  
pp. 120-127
Author(s):  
Yusuke Masuya ◽  
Etsushi Kumagai ◽  
Maya Matsunami ◽  
Hiroyuki Shimono

2007 ◽  
Vol 164 (10) ◽  
pp. 1391-1393 ◽  
Author(s):  
Juan Jose Almaraz ◽  
Xiaomin Zhou ◽  
Alfred Souleimanov ◽  
Donald Smith

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanullah ◽  
Shah Khalid ◽  
Farhan Khalil ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

AbstractThe dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.


Sign in / Sign up

Export Citation Format

Share Document