Thermal Adaptation of Pennisetum: Leaf Structure and Composition

1977 ◽  
Vol 4 (4) ◽  
pp. 541 ◽  
Author(s):  
CJ Pearson ◽  
DG Bishop ◽  
M Vesk

Studies were made of the effects of growth temperatures and transition to colder temperature on chloroplast ultrastructure, chlorophyll accumulation, lipids and protein of two Pennisetum americanum cultivars and a P. americanum × P. purpureum biotype which differed in temperature sensitivity. All genotypes had structure and chlorophyll distribution consistent with NADP-malic enzyme C4 systems and lipid phase transitions at temperatures similar to those of other 'chilling-sensitive' plants. All accumulated less starch at low temperature and there was mobilization of starch, aggregation of thylakoids in mesophyll chloroplasts and swelling of loculi on transition from 24/19 to 18/13°C. Intolerance of Pennisetum to low temperature was clearly not due to accumulation of starch, nor were genotypic differences in temperature sensitivity related to starch. The cold susceptibility of cv. Ingrid Pearl, in contrast with the tolerance of the intraspecific and interspecific hybrids, was associated with inability to accumulate chlorophyll in the mesophyll of some leaves; fluctuations in chlorophyll a/b ratios within 5 days of transition to lower temperature; and inability to accumulate higher concentrations of soluble proteins in apparently normal leaves grown at 18/13°C. Genotypic differences in temperature sensitivity did not appear related to the physical properties of membranes, which did not change within 5 days of transition to 18/13°C.

2013 ◽  
Vol 675 ◽  
pp. 280-283
Author(s):  
Qiu Xiang Tian ◽  
Hong Bo He ◽  
Xu Dong Zhang

The mineralization of soil carbon materials potentially alters carbon release from soil and the atmospheric carbon concentration in engineering. Despite this central role in the decomposition of soil carbon materials, few studies have been conducted on how climate warming affects this carbon emissions and then response in return back. To study this, five soils were incubated in 5, 15, 25 °C for one month. Soil shifted to warming condition slowed down the increasing rate of decomposition causing by higher temperature. Furthermore, raising the soil environment temperature to 25 °C weakened the temperature sensitivity of the decomposition of these carbon materials, and the temperature sensitivity enhanced at lower temperature. This “thermal adaptation” of carbon material would potentially slow down carbon loss which accelerated by climate change technically.


2021 ◽  
Author(s):  
Jun-Ichiro Makiura ◽  
Takuma Higo ◽  
Yutaro Kurosawa ◽  
Kota Murakami ◽  
Shuhei Ogo ◽  
...  

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3089
Author(s):  
Peilei Zhou ◽  
Wensheng Wang ◽  
Lili Zhu ◽  
Haoyun Wang ◽  
Yongming Ai

This study aims to investigate the performance evolution and mechanism of asphalt under action of chloride salt erosion. Asphalt samples soaked with five different snow melting chloride salt concentrations were taken as the research object. Then, the high-temperature performance, low-temperature performance, temperature sensitivity and asphalt–aggregate adhesion property of asphalt samples were carried out. Additionally, Fourier transform infrared spectroscopy (FTIR) was used to explore the mechanism of chloride salt erosion on asphalt. Test results showed the linear variation relationships of high-temperature performance, low-temperature performance and temperature sensitivity with chloride salt concentrations. The high-temperature performance of asphalt would be improved by chloride snowmelt salt. With the increase in the chloride salt solution concentration, the low-temperature performance of asphalt became worse, and the temperature sensitivity increased. Moreover, after the effect of the chloride salt solution, the asphalt–aggregate adhesion property decreased with the increase in the chloride salt solution concentration. It is necessary to control the amount of chloride snowmelt salt in the actual snow removal projects. Finally, based on Fourier transform infrared spectroscopy, the mechanism of chloride salt erosion on asphalt was preliminarily explored. With the increase in the chloride salt solution concentration, the proportion of light components (saturated fraction, aromatic fraction) in asphalt decreased, and the proportion of heavy components (resin and asphaltene) with good thermal stability increased.


Author(s):  
Zitong Feng ◽  
Vincent Michaud-Belleau ◽  
Jayanta K. Sahu ◽  
Johan Nilsson ◽  
Christophe A. Codemard ◽  
...  

Author(s):  
Fasong Zheng ◽  
Fang Fang ◽  
Weiliang Chen ◽  
Kun Liu ◽  
Shaoyang Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document