A Diode Laser-Based Singlet Oxygen Monitor for Photodynamic Therapy; in- vitro and in- vivo Studies

2006 ◽  
Author(s):  
Seonkyung Lee ◽  
Danthu H. Vu ◽  
Michael F. Hinds ◽  
Steven J. Davis ◽  
Tayyaba Hasan ◽  
...  
2009 ◽  
Vol 14 (1) ◽  
pp. 019801
Author(s):  
Seonkyung Lee ◽  
Danthu H. Vu ◽  
Michael F. Hinds ◽  
Steven J. Davis ◽  
Alvin Liang ◽  
...  

2008 ◽  
Vol 13 (6) ◽  
pp. 064035 ◽  
Author(s):  
Seonkyung Lee ◽  
Danthu H. Vu ◽  
Michael F. Hinds ◽  
Steven J. Davis ◽  
Alvin Liang ◽  
...  

Laser Physics ◽  
2014 ◽  
Vol 24 (4) ◽  
pp. 045601 ◽  
Author(s):  
F Alves ◽  
E G Mima ◽  
L N Dovigo ◽  
V S Bagnato ◽  
J H Jorge ◽  
...  

Author(s):  
Mack Biyiklioglu

A new sulfonic zinc(II) phthalocyanine bearing sodium 3-mercaptopropanesulphonate (Pc) was synthesized and characterized, as to its photophysical and photochemical properties, in vitro and in vivo. Pc remain non-aggregated in [Formula: see text],[Formula: see text]-dimethylformamide and in water containing 0.1% Cremophor EL, with high singlet oxygen efficacy. In vitro studies showed that the IC[Formula: see text] value of Pc on HepG2 cells was 1.3 [Formula: see text]M. In addition, in vivo studies showed that Pc mainly accumulated in tumor sites and showed an obvious PDT effect, and ca.97% of tumor growth was inhibited. Therefore, the Pc could be applied as a very promising photosensitizer for PDT in future clinical applications.


2015 ◽  
Vol 99 (9) ◽  
pp. 4031-4043 ◽  
Author(s):  
Mariusz Grinholc ◽  
Joanna Nakonieczna ◽  
Grzegorz Fila ◽  
Aleksandra Taraszkiewicz ◽  
Anna Kawiak ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 31-46
Author(s):  
D. A. Tzerkovsky ◽  
E. L. Protopovich ◽  
D. S. Stupak

In the present publication, authors have analyzed the results of using sonodynamic and sono-photodynamic therapy with photosensitizing agents of various classes (hematoporphyrin, 5-aminolevulinic acid, chlorin derivatives, etc.) in experimental oncology. In a number of in vitro and in vivo studies, the high antitumor efficacy of the above treatment methods has been proven. Ultrasonic treatment with a pulse frequency of 1–3 MHz and an intensity of 0.7 to 5 W/cm2 , independently and in combination with photo-irradiation of experimental tumors, can significantly improve the cytotoxic properties of photosensitizers. This became the basisfor testing the methodsin patients with malignant neoplasms of various localizations. Scientists fromSouth-East Asia presented the preliminary results of the use of sonodynamic and sono-photodynamic therapy with photosensitizers in the treatment of malignant pathology of the mammary gland, stomach, esophagus, prostate, lung and brain. Analysis of the obtained data indicates the absence of serious adverse events and an increase in the antitumor efficacy of treatment, which included these treatment methods with chlorin-type photosensitizers. 


2004 ◽  
Vol 90 (8) ◽  
pp. 1660-1665 ◽  
Author(s):  
C Perotti ◽  
H Fukuda ◽  
G DiVenosa ◽  
A J MacRobert ◽  
A Batlle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document