Production of viable cloned miniature pigs by aggregation of handmade cloned embryos at the 4-cell stage

2014 ◽  
Vol 26 (3) ◽  
pp. 395 ◽  
Author(s):  
Chawalit Siriboon ◽  
Ching-Fu Tu ◽  
Michel Kere ◽  
Ming-Sing Liu ◽  
Hui-Jung Chang ◽  
...  

The aim of the present study was to improve the quality of handmade cloned porcine embryos by multiple embryo aggregations. Embryos derived from aggregation of three cloned embryos (3×) had a better blastocyst rate than cloned control (1×) embryos (73.6% vs 35.1%, respectively; P < 0.05), but did not differ from those produced by aggregation of two cloned embryos (2×; 63.0%). Total cell numbers differed among treatments (P < 0.05), with the greatest cell numbers (126) in the 3× group and the lowest (55) in the control group. The ratio of inner cell mass : total cell number was comparable in the 2× and 3× groups (25.1% vs 26.1%, respectively) and was significantly better than that in the control group (15.3%). The proportion of apoptotic cells in 2× and 3× groups was lower than that in the control group (2.7% and 2.2% vs 4.7%, respectively; P < 0.05). Expression of Oct4 and Cdx2 was higher, whereas that of Bax was lower (P < 0.05), in the 3× compared with non-aggregate group. Seven piglets were born to two surrogate mothers after embryo transfer of 3× aggregated blastocysts. In conclusion, aggregated embryos had greater total cell numbers and better pluripotency gene expression, with reduced expression of the pro-apoptosis gene Bax. Collectively, these improvement may be associated with the development of cloned embryos to term.

Zygote ◽  
1997 ◽  
Vol 5 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Rabindranath de la Fuente ◽  
W. Allan King

SummaryThe mammalian blastocyst comprises an inner cell mass (ICM) and a trophectoderm cell layer. In this study the allocation of blastomeres to either cell lineage was compared between murine, porcine and bovine blastocysts. Chemical permeation of trophectoderm cells by the Ca2+ ionophore A23187 in combination with DNA-specific fluorochromes resulted in the differential staining of trophectoderm and ICM. Confocal microscopy confirmed the exclusive permeation of trophectoderm and the internal localisation of intact ICM cells in bovine blastocysts. Overall, differential cell counts were obtained in approximately 85% of the embryos assessed. Mean (±SEM) total cell numbers were 72.2 ± 3.1 and 93.1±5 for in vivo derived murine (n = 41) and porcine (n = 21) expanded blastocysts, respectively. Corresponding ICM cell number counts revealed ICM/total cell number ratios of 0.27 and 0.21, respectively. Comparison of in vivo (n = 20) and in vitro derived bovine embryos on day 8 (n = 29) or day 9 (n = 29) revealed a total cell number of 195.25±9.9, 166.14±9.9 and 105±6.7 at the expanded blastocyst stage with corresponding ICM/total cell ratios of 0.27, 0.23 and 0.23, respectively. While total cell numbers differed significantly among the three groups of bovine embryos (p<0.05), the ICM/total cell ratio did not. These results indicate that a similar proportion of cells is allocated to the ICM among blastocysts of genetically divergent species.


2019 ◽  
Vol 31 (1) ◽  
pp. 164
Author(s):  
A. E. Ynsaurralde Rivolta ◽  
M. Suvá ◽  
V. Alberio ◽  
C. Vazquez Echegaray ◽  
A. Guberman ◽  
...  

Bovine monozygotic production of twins became popular in the 1980s as a technique to multiply high value genetics. Moreover, it also became a powerful model for research. Different techniques have been used on bovine embryos obtained by superovulation. In this work, we compared the development rates and quality of monozygotic twin embryos produced by blastomere separation (BS) and embryo bisection (EB) of IVF embryos. To this aim, cumulus-oocytes complexes collected from slaughterhouse ovaries were in vitro matured in TCM 199 containing 10% fetal bovine serum, 10µg mL−1 FSH, 0.3mM sodium pyruvate, 100mM cysteamine, and 2% antibiotic-antimycotic for 24h, at 6.5% CO2 in humidified air and 38.5°C. The IVF was performed with 16×106 spermatozoa per mL for 5h. Afterward, presumptive zygotes were cultured in SOF medium for 7 days at 38.5°C and 5% O2. After 24h of culture, blastomeres of 2-cell stage embryos (N=114) were separated and each one was cultured individually in a microwell for 7 days. Embryo bisection (N=179) was performed manually on Day-7 blastocysts previously depleted of their zonae pellucidae, under stereoscopic microscope. Hemi embryos were cultured for 24h and then twins and single blastocyst rates were calculated. For quality assessment, diameter, total and inner cell mass (ICM) cell number of hemi embryos (BS: 6 couples; ES: 10 couples) and the control group (C: 11) were evaluated. The ICM cell number was measured by immunofluorescence staining using SOX2 antibody and the percentage of ICM and trophectoderm (TE) cells was calculated. The results were analysed using Fisher’s exact test and ANOVA with mean comparison using Tukey’s test (P=0.05). No statistical differences were found in blastocyst rates of twins and single hemi embryos produced by BS (28 and 25%) or EB (23 and 32%). Blastocyst diameter was similar between groups and control. Hemi embryos exhibited lower total and ICM cell number than control (BS: 43±18, EB: 57±14v. C: 93±35 and BS: 16±7, EB: 12±8v. C: 34±19). However, BS hemi embryos had higher ICM and lower TE percentage (40/60%) compared with the EB group (20/80%). The control group did not differ with hemi embryo treatments for ICM and TE (30/70%). Our preliminary results have indicated that although the development rates of hemi embryos produced in vitro were similar between both techniques, blastomere separation generates better quality embryos than blastocyst bisection.


2008 ◽  
Vol 20 (1) ◽  
pp. 188
Author(s):  
D. N. Q. Thanh ◽  
K. Kikuchi ◽  
T. Somfai ◽  
M. Ozawa ◽  
M. Nakai ◽  
...  

Mammalian eggs are so microlecithal that the embryos would be expected to divide in unison and that each division would lead to 2 equal blastomeres, which are believed to have a greater competence for further development than zygotes with unequal cleavage. However, some studies have shown that uneven blastomere size commonly occurs from the very first division in mammals, and it seems to be concerned with the generation of the first cell lineages of the blastocyst cells: trophectoderm and the inner cell mass (Gueth-Hallonet and Maro 1992 Trends Genet. 8, 274–279). In our study, we produced porcine embryos in vitro (Kikuchi et al. 2002 Biol. Reprod. 66, 1031–1041), and newly formed 2-cell embryos were collected. Based on the timing of the first cleavage (30 or 36 h after insemination), the cleavage pattern (E: equal; U: unequal) and the presence or absence of a second cleavage (+ or –) within the first 2 days of IVC was classified into groups: 30E(–), 30E(+), 30U(–), 30U(+), 36E(–), 36E(+), 36U(–), or 36U(+). There was no difference between the 30E and 30U groups in proportions of the 2-cell stage, which had a nucleus in both blastomeres (99.0 � 0.8% and 91.4 � 3.6%, respectively) or between the 36E and 36U groups (98.2 � 1.1% and 88.0 � 7.2%, respectively). Comparison of further development between the 30E and 30U groups showed that there was no difference in blastocyst rates (70.7 � 5.7% and 61.7 � 7.8%, respectively) and total cell numbers (39.1 � 2.1 and 31.7 � 2.3, respectively). Although the blastocyst rate in the 36E group (37.3 � 6.7%) was significantly higher (P < 0.05) than that of the 36U group (12.0 � 5.1%), the total cell number was not different (26.3 � 5.5 and 25.3 � 5.2, respectively). The timing of the first division, however, had a great influence on further development of the embryos; the 30-h cleaved embryos had a greater rate of blastocyst development (68.2 � 6.3%) than did the 36-h embryos (28.2 � 4.8%, P < 0.01 by ANOVA). The cell numbers of blastocysts derived from 30-h cleaved embryos (37.2 � 2.6) were significantly higher than those of the 36-h embryos (26.2 � 2.3, P < 0.01) as well. Two-cell embryos that were newly formed at 30 h and underwent the next cleavage within the first 2 days of IVC (30 + group) had a higher blastocyst rate (74.8 � 7.0%) and greater cell numbers (40.6 � 2.6) than those not showing a second division during this period (30– group; 46.8 � 5.0% and 19.9 � 2.2, respectively). In contrast, for embryos showing the first cleavage at 36 h of insemination, the presence of the next cleavage within 2 days after the first cleavage did not have any effect on embryonic development. These results suggest that the developmental ability of porcine embryos was influenced by the timing and shape of the first cleavage and by the subsequent occurrence of the second cleavage.


2021 ◽  
Vol 33 (2) ◽  
pp. 142
Author(s):  
J. Ispada ◽  
C. B. de Lima ◽  
E. C. dos Santos ◽  
A. M. da Fonseca Junior ◽  
J. V. Alcantara da Silva ◽  
...  

DNA methylation/demethylation is one of several epigenetic mechanisms by which metabolism regulates gene expression. More specifically, α-ketoglutarate (αKG) and succinate (Suc) are tricarboxylic acid cycle metabolites that may decrease and increase, respectively, the activity of DNA demethylases. Because pre-implantation embryos undergo reprogramming in both DNA methylation and metabolic pathways, it is possible that metabolic changes influence this epigenetic mark. To test that hypothesis, bovine embryos were invitro produced by using standard protocols and, 8h after fertilization, zygotes were transferred to synthetic oviductal fluid (SOF)-based culture medium (control, CO) or culture medium containing 4mM dimethyl-αKG, or 4mM dimethyl-Suc, where they remained until Day 4. Embryos were collected at Day 4 or remained in culture until Day 7, in control medium. Day 4 embryos were evaluated for DNA methylation levels by immunofluorescence detection of 5-methylcytosine (5mC) and cleavage rate. Day 7 embryos were also assessed for DNA methylation by immunofluorescence of 5mC, total cell number, blastocyst rates, and quantification of ACTB (housekeeping), DNMT1, DNMT3A, and DNMT3B transcript by RT-qPCR in trophectoderm (TE) and inner cell mass (ICM) separated by immunosurgery. The mRNA expression levels of were normalized to internal control ACTB and subsequently calculated using the 2−ΔΔCT method, using the control group for comparisons. All data were submitted to outlier detection using ROUT with Q=1% followed by one-way analysis of variance (ANOVA) and Fisher’s least significant difference (l.s.d.) test in GraphPad Prism. αKG and Suc did not influence cleavage or blastocyst rates, total cell number, or cell allocation. αKG supplementation reduced 5mC fluorescence intensity in embryos assessed at Day 4 (CO: 12.8±0.4 AU; αKG: 9.0±0.2AU; P&lt;0.0001) and Day 7 (CO: 36.5±0.7 AU; αKG: 23.5±0.4 AU; P&lt;0.0001), whereas Suc incubation increased DNA methylation levels in embryos at Day 4 (CO: 12.8±0.4 AU; Suc: 15.7±0.3 AU; P&lt;0.0001) and Day 7 (CO: 36.5±0.7 AU; Suc: 70.5±0.5 AU; P&lt;0.0001). αKG increased expression of DNMT1 (P=0.0438) in the ICM and led to lower levels of DNMT1 (P&lt;0.0001), DNMT3A (P=0.0013), and DNMT3B (P=0.0015) in TE cells. The culture with Suc increased DNMT1 (P=0.0074), DNMT3A (P=0.0186), and DNMT3B (P=0.0286) in ICM. Regarding TE, Suc resulted in lower expression of DNMT1 (P&lt;0.0001), DNMT3A (P=0.0017), and DNMT3B (P=0.0052). In conclusion, both supplementations resulted in global DNA methylation changes without affecting embryo development rates or morphology. These changes were accompanied by alterations in transcript profiles between ICM and TE, with differences among treatments being more pronounced in transcripts from ICM. This is the first report of DNA demethylation–induced changes by analogues of TCA cycle metabolites during early reprogramming of the bovine embryo with prolonged effects in TE and ICM cells. This research was funded by FAPESP: 2017/18384-0; 2018/11668-6.


1990 ◽  
Vol 2 (1) ◽  
pp. 51 ◽  
Author(s):  
GR Somers ◽  
AO Trounson ◽  
LJ Wilton

The allocation of cells to the inner cell mass (ICM) and trophectoderm (TE) was investigated at 6-h intervals from 78 h to 102 h after hCG injection in 3/4 mouse embryos to determine the effect of removal of a single blastomere at the 4-cell stage on early differentiation. The procedures used to produce 3/4 embryos had little effect on embryo development. Embryos that had a single blastomere removed and then re-aggregated (RA embryos) had the same total number of cells as untreated (UT) embryos except at 78 h (P less than 0.05) and 102 h (P less than 0.01) post hCG where there were slightly less cells in RA embryos. Three-quarter embryos always had significantly fewer cells than RA embryos (P less than 0.001), with an average of 74% of the total cell number of RA embryos. As expected, 3/4 embryos always had significantly fewer cells in the ICM and TE compared with RA embryos (P less than 0.001). However, the ICM:TE ratio was also significantly lower in 3/4 embryos compared with RA embryos at 84, 96, and 102 h post hCG, indicating that the allocation of cells to the ICM and TE was disturbed. The ICM:TE ratio of 3/4 embryos could not be manipulated if either an early- or late-dividing blastomere was selectively biopsied at the 4-cell stage; this suggests that the known preferential contribution of an early-dividing blastomere to the ICM is not cell autonomous.


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 793-803 ◽  
Author(s):  
V.E. Papaioannou ◽  
K.M. Ebert

Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12–16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 597-604 ◽  
Author(s):  
K. Hardy ◽  
A.H. Handyside ◽  
R.M. Winston

The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/− 8.1 cells, which increased to 84.4 +/− 5.7 and 125.5 +/− 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/− 6.0 and 40.3 +/− 5.0, respectively) and then doubled on day 7 (80.6 +/− 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/− 4.0 and 41.9 +/− 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/− 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.


Development ◽  
1973 ◽  
Vol 29 (3) ◽  
pp. 601-615
Author(s):  
M. H. L. Snow

Mouse embryos were grown in vitro from the 2-cell stage to blastocysts in the presence of [3H]thymidine. Methyl-T-thymidine and thymidine-6-T(n) were used and both forms found to be lethal at concentrations above 0·1 μCi/ml. Both forms of [3H]Tdr at concentrations between 0·01 and 0·1 μCi/ml caused a highly significant (P &lt; 0·001) reduction in blastocyst cell number. The reduction in cell number, which was positively correlated with specific activity and tritium concentration, was associated with cell damage typical of radiation damage caused by tritium disintegration. Thymidine-6-T(n) also significantly reduced the number of 2-cell embryos forming blastocysts whereas methyl-T-Tdr did not. This difference in effect is assumed to be caused by contamination of one form of [3H]Tdr with a by-product of the tritiation process. A study of the cleavage stages showed that almost all the reduction in cell numbers could be accounted for by selective cell death occurring at the 16-cell stage. Cells which survive that stage cleave at a normal rate. The cells that are most susceptible to [3H]Tdr damage were found to normally contribute to the inner cell mass. The [3H]Tdr-resistant cells form the trophoblast. It is possible to grow blastocysts in [3H]Tdr such that they contain no inner cell mass but are composed entirely of trophoblast. Comparatively short (12 h) incubation with [3H]Tdr at any stage prior to the 16-cell stage will cause this damage. Possible reasons for this differential effect are discussed, and also compared with damage caused by X-irradiation.


2016 ◽  
Vol 28 (2) ◽  
pp. 137
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
D. Hermann ◽  
...  

Conventional “Dolly”-based cloned (CNT) embryos maintain zona pellucida and can be transferred early in development. Handmade cloned (HMC) embryos are zona free and are cultured to later stages for transfer. We have shown differences between HMC and CNT embryos (Rep. Fert. Dev. 26, 123), and both in vitro culture and cloning method (NT) are associated with alterations in histone acetylation. More studies are needed to clarify whether CNT and HMC embryos differ in epigenetic profiles due to NT method or culture condition. Here we investigated histone acetylation profile of NT embryos produced by CNT or HMC with or without 5 to 6 days in vitro culture, emphasising quality and gene expression in resulting embryos. Both NT methods were performed on Day 0 (D0) with same oocyte batch, donor cells, and culture medium (CNT in group, HMC in well of well). On D0, 5, and 6 after CNT (Clon. Stem Cells 10, 355) or HMC (Zygote 20, 61), all developed embryos of all morphological qualities were collected for immunostaining of H3K18ac, and on D0 and 6 for mRNA expression of the genes KAT2A/2B, EP300, HDAC1/2, DNMT1o/s, and GAPDH. Embryo quality was evaluated normal (clear inner cell mass, high cell number, no fragments) or bad (no clear inner cell mass, low cell number, fragments). Cell numbers per blastocyst were counted on D5 and 6. Differences in cell number and H3K18ac level between different groups and days were analysed by ANOVA; gene expression data were analysed by GLM (SAS version 9.3, SAS Institute Inc., Cary, NC, USA). Embryo development rates of both NT methods were reported previously (Rep. Fert. Dev. 26, 123). On D5 and 6, all HMC embryos were evaluated as normal, but the CNT group contained both normal and bad embryos. Regarding cell numbers (Table 1), on D5 there was no difference between normal CNT and HMC embryos, but numbers were lower in CNT bad embryos. On D6 the blastocyst cell number was lower in both normal and bad CNT embryos compared with HMC. Regarding H3K18ac levels (Table 1), no differences were found on D5 between normal CNT and HMC embryos, but on D6 both CNT normal and bad embryos had higher H3K18ac level compared with HMC. On D0, no difference was found in mRNA expression of all 8 genes. On D6, KAT2A expression was slight increased (1.8-fold) in CNT compared with HMC embryos (P < 0.05). In conclusion, no differences were found between CNT and HMC embryos after completed NT procedure (D0) or after 5 days in vitro culture. However, differences in quality (cell number and H3K18ac) and gene expression between the 2 NT methods were observed when blastocyst expansion was initiated (D6). Thus, the 2 NT methods seem to produce embryos of similar quality, which is maintained over 5 days in vitro culture, but thereafter gene expression and histone acetylation are more active in CNT embryos. Table 1.Cell number and H3K18ac level1


2009 ◽  
Vol 21 (9) ◽  
pp. 21
Author(s):  
J. M. Campbell ◽  
I. Vassiliev ◽  
M. B. Nottle ◽  
M. Lane

Human ESCs are produced from embryos donated at the mid-stage of pre-implantation development. This cryostorage reduced viability. However, it has been shown that this can be improved by the addition of growth factors to culture medium. The aim of the present study was to examine whether the addition of insulin to embryo culture medium from the 8-cell stage of development increases the number of ES cell progenitor cells in the epiblast in a mouse model. In vivo produced mouse zygotes (C57Bl6 strain) were cultured in G1 medium for 48h to the 8-cell stage, followed by culture in G2 supplemented with insulin (0, 0.17, 1.7 and 1700pM) for 68h, at 37 o C , in 5% O2, 6%CO2, 89% N2 . The number of cells in the inner cell mass (ICM) and epiblast was determined by immunohistochemical staining for Oct4 and Nanog. ICM cells express Oct4, epiblast cells express both Oct4 and Nanog. The addition of insulin at the concentrations examined did not increase the ICM. However, at 1.7pM insulin increased the number of epiblast cells (6.6±0.5 cells vs 4.1±0.5, P=0.001) in the ICM, which increased the proportion of the ICM that was epiblast (38.9±3.7% compared to 25.8±3.4% in the control P=0.01). This indicates that the increase in the epiblast is brought about by a shift in cell fate as opposed to an increase in cell division. The effect of insulin on the proportion of cells in the epiblast was investigated using inhibitors of phosphoinositide3-kinase (PI3K) (LY294002, 50µM); one of insulin's main second messengers, and p53 (pifithrin-α, 30µg/ml); a pro-apoptotic protein inactivated by PI3K. Inhibition of PI3K eliminated the increase caused by insulin (4.5±0.3 cells versus 2.2±0.3 cells, P<0.001), while inhibition of p53 increased the epiblast cell number compared to the control (7.1±0.8 and 4.1±0.7 respectively P=0.001). This study shows that insulin increases epiblast cell number through the activation of PI3K and the inhibition of p53, and may be a strategy for improving ESC isolation from human embryos.


Sign in / Sign up

Export Citation Format

Share Document