Pseudopregnancy and reproductive cycle synchronisation cannot be induced using conventional methods in the spiny mouse (Acomys cahirinus)

2020 ◽  
Vol 32 (4) ◽  
pp. 363 ◽  
Author(s):  
Nadia Bellofiore ◽  
Stacey J. Ellery ◽  
Peter Temple-Smith ◽  
Jemma Evans

The menstruating spiny mouse is the first rodent identified to exhibit natural spontaneous decidualisation, cyclical endometrial shedding and regeneration. While the spiny mouse shares several primate-like characteristics in its reproductive biology, it has not been established whether pseudopregnancy can be induced or if its cycles can be synchronised as in non-human mammals. Here we describe attempts to induce pseudopregnancy and synchronisation of menstrual cycles (i.e. Whitten effect) in spiny mice. Virgin females (n=3–8 per group) underwent one of the following procedures to induce pseudopregnancy: daily vaginal lavage only (control), progesterone injection, mechanical stimulation of the cervix and sterile mating. A separate cohort was also exposed to male-soiled bedding to assess the Whitten effect. Pseudopregnancy was deemed successful if females presented with extended (>12 consecutive days) leukocytic vaginal cytology. No female from any method of induction met this criterion. In addition, the menstrual cycles of a group of six females could not be synchronised, nor immediate ovulation induced via exposure to male-soiled bedding. These responses indicate that the spiny mouse does not behave as a typical rodent. Like higher-order primates, the spiny mouse exhibits a relatively rare reproductive strategy, of failure to show pseudopregnancy or cyclical synchronisation. This is further endorsement of the use of this species as a versatile animal model for translational studies of menstruation and fertility.

2001 ◽  
Vol 120 (5) ◽  
pp. A83-A83
Author(s):  
M KIM ◽  
N JAVED ◽  
F CHRISTOFI ◽  
H COOKE

2003 ◽  
Vol 773 ◽  
Author(s):  
James D. Kubicek ◽  
Stephanie Brelsford ◽  
Philip R. LeDuc

AbstractMechanical stimulation of single cells has been shown to affect cellular behavior from the molecular scale to ultimate cell fate including apoptosis and proliferation. In this, the ability to control the spatiotemporal application of force on cells through their extracellular matrix connections is critical to understand the cellular response of mechanotransduction. Here, we develop and utilize a novel pressure-driven equibiaxial cell stretching device (PECS) combined with an elastomeric material to control specifically the mechanical stimulation on single cells. Cells were cultured on silicone membranes coated with molecular matrices and then a uniform pressure was introduced to the opposite surface of the membrane to stretch single cells equibiaxially. This allowed us to apply mechanical deformation to investigate the complex nature of cell shape and structure. These results will enhance our knowledge of cellular and molecular function as well as provide insights into fields including biomechanics, tissue engineering, and drug discovery.


Diabetes ◽  
1975 ◽  
Vol 24 (12) ◽  
pp. 1094-1100 ◽  
Author(s):  
A. Rabinovitch ◽  
A. Gutzeit ◽  
A. E. Renold ◽  
E. Cerasi

2012 ◽  
Vol 20 (6) ◽  
pp. 717-722 ◽  
Author(s):  
Zhao-Xiang HUANG ◽  
Jia-En ZHANG ◽  
Kai-Ming LIANG ◽  
Guo-Ming QUAN ◽  
Ben-Liang ZHAO

2011 ◽  
Vol 11 (5) ◽  
pp. 545-556 ◽  
Author(s):  
Huei-Wen Wu ◽  
Chun-Che Lin ◽  
Shiaw-Min Hwang ◽  
Yu-Jen Chang ◽  
Gwo-Bin Lee

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 474
Author(s):  
Silvia Todros ◽  
Silvia Spadoni ◽  
Edoardo Maghin ◽  
Martina Piccoli ◽  
Piero G. Pavan

Muscular tissue regeneration may be enhanced in vitro by means of mechanical stimulation, inducing cellular alignment and the growth of functional fibers. In this work, a novel bioreactor is designed for the radial stimulation of porcine-derived diaphragmatic scaffolds aiming at the development of clinically relevant tissue patches. A Finite Element (FE) model of the bioreactor membrane is developed, considering two different methods for gripping muscular tissue patch during the stimulation, i.e., suturing and clamping with pliers. Tensile tests are carried out on fresh and decellularized samples of porcine diaphragmatic tissue, and a fiber-reinforced hyperelastic constitutive model is assumed to describe the mechanical behavior of tissue patches. Numerical analyses are carried out by applying pressure to the bioreactor membrane and evaluating tissue strain during the stimulation phase. The bioreactor designed in this work allows one to mechanically stimulate tissue patches in a radial direction by uniformly applying up to 30% strain. This can be achieved by adopting pliers for tissue clamping. Contrarily, the use of sutures is not advisable, since high strain levels are reached in suturing points, exceeding the physiological strain range and possibly leading to tissue laceration. FE analysis allows the optimization of the bioreactor configuration in order to ensure an efficient transduction of mechanical stimuli while preventing tissue damage.


Sign in / Sign up

Export Citation Format

Share Document