scholarly journals A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 474
Author(s):  
Silvia Todros ◽  
Silvia Spadoni ◽  
Edoardo Maghin ◽  
Martina Piccoli ◽  
Piero G. Pavan

Muscular tissue regeneration may be enhanced in vitro by means of mechanical stimulation, inducing cellular alignment and the growth of functional fibers. In this work, a novel bioreactor is designed for the radial stimulation of porcine-derived diaphragmatic scaffolds aiming at the development of clinically relevant tissue patches. A Finite Element (FE) model of the bioreactor membrane is developed, considering two different methods for gripping muscular tissue patch during the stimulation, i.e., suturing and clamping with pliers. Tensile tests are carried out on fresh and decellularized samples of porcine diaphragmatic tissue, and a fiber-reinforced hyperelastic constitutive model is assumed to describe the mechanical behavior of tissue patches. Numerical analyses are carried out by applying pressure to the bioreactor membrane and evaluating tissue strain during the stimulation phase. The bioreactor designed in this work allows one to mechanically stimulate tissue patches in a radial direction by uniformly applying up to 30% strain. This can be achieved by adopting pliers for tissue clamping. Contrarily, the use of sutures is not advisable, since high strain levels are reached in suturing points, exceeding the physiological strain range and possibly leading to tissue laceration. FE analysis allows the optimization of the bioreactor configuration in order to ensure an efficient transduction of mechanical stimuli while preventing tissue damage.

Lab on a Chip ◽  
2018 ◽  
Vol 18 (19) ◽  
pp. 2955-2965 ◽  
Author(s):  
M. Monticelli ◽  
D. S. Jokhun ◽  
D. Petti ◽  
G. V. Shivashankar ◽  
R. Bertacco

We introduce a new platform for mechanobiology based on active substrates, made of Fe-coated polymeric micropillars, capable to apply mechanical stimuli with tunable spatio-temporal profile on a cell culture.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2155 ◽  
Author(s):  
Dahiana Mojena-Medina ◽  
Marina Martínez-Hernández ◽  
Miguel de la Fuente ◽  
Guadalupe García-Isla ◽  
Julio Posada ◽  
...  

Cell functions and behavior are regulated not only by soluble (biochemical) signals but also by biophysical and mechanical cues within the cells’ microenvironment. Thanks to the dynamical and complex cell machinery, cells are genuine and effective mechanotransducers translating mechanical stimuli into biochemical signals, which eventually alter multiple aspects of their own homeostasis. Given the dominant and classic biochemical-based views to explain biological processes, it could be challenging to elucidate the key role that mechanical parameters such as vibration, frequency, and force play in biology. Gaining a better understanding of how mechanical stimuli (and their mechanical parameters associated) affect biological outcomes relies partially on the availability of experimental tools that may allow researchers to alter mechanically the cell’s microenvironment and observe cell responses. Here, we introduce a new device to study in vitro responses of cells to dynamic mechanical stimulation using a piezoelectric membrane. Using this device, we can flexibly change the parameters of the dynamic mechanical stimulation (frequency, amplitude, and duration of the stimuli), which increases the possibility to study the cell behavior under different mechanical excitations. We report on the design and implementation of such device and the characterization of its dynamic mechanical properties. By using this device, we have performed a preliminary study on the effect of dynamic mechanical stimulation in a cell monolayer of an epidermal cell line (HaCaT) studying the effects of 1 Hz and 80 Hz excitation frequencies (in the dynamic stimuli) on HaCaT cell migration, proliferation, and morphology. Our preliminary results indicate that the response of HaCaT is dependent on the frequency of stimulation. The device is economic, easily replicated in other laboratories and can support research for a better understanding of mechanisms mediating cellular mechanotransduction.


2020 ◽  
Author(s):  
Aric Anloague ◽  
Aaron Mahoney ◽  
Oladipupo Ogunbekun ◽  
William R. Thompson ◽  
Bryan Larsen ◽  
...  

Abstract Objective Soft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. A series of previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that repetitive strain, intended to mimic overuse injury, induces the secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results. Results Using cultures of primary human dermal fibroblasts, we confirm mechanical forces intended to mimic repetitive motion strain increases levels of IL-6 and that mechanical strain intended to mimic therapeutic soft tissue stimulation reduces IL-6 levels. We also extend the prior work, reporting that therapy-like mechanical stimulation reduces levels of IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence that therapeutic soft tissue massage may reduce inflammation. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.


1992 ◽  
Vol 67 (6) ◽  
pp. 1509-1527 ◽  
Author(s):  
C. M. Owens ◽  
D. Zhang ◽  
W. D. Willis

1. The responses of a population of 318 spinothalamic tract (STT) cells to mechanical stimulation of the skin were recorded in anesthetized macaque monkeys by several teams of investigators. The responses were subjected to k-means cluster analysis, a multivariate statistical procedure. 2. For an analysis that pertained to the responsiveness of the neurons, the mean responses to four standard mechanical stimuli (Brush, Pressure, Pinch, and Squeeze) were used. Although no true clusters were found, the cells could be partitioned into four groups (called clusters a, b, c, and d) that responded progressively more vigorously to the stimuli. 3. For an analysis that pertained to the selectivity of the cells for various stimulus intensities, from innocuous to highly noxious, the data were normalized by taking the ratio of the mean response evoked by each stimulus to the sum of the responses and multiplying by 100. This procedure does not have a bias toward selection of any particular number of clusters and resulted in three clusters of STT cells. 4. Cluster 1 STT cells responded best to Brush. Cluster 2 cells responded weakly to Brush and Pressure and maximally to Pinch. Cluster 3 cells responded weakly to Brush, Pressure, and Pinch and maximally to Squeeze. 5. The response states of STT cells with respect to mechanical stimulation of the skin can be defined by their cluster assignments on the basis of the responsiveness (clusters a-d) and selectivity (clusters 1-3) of the cells. The response states of newly recorded STT cells can be determined by discriminant analysis from the nearest centroids of the two types of clusters in the reference population of STT cells. 6. No consistent changes in response state were detected when a second series of mechanical stimuli was applied 1 cm from the site stimulated initially or when the stimulus series was alternately repeated at the initial site and at progressively more proximal sites. However, when the stimulus series was applied five times to the initial site, the response state of five of eight cells tested showed a change. Although a change in response state required repetitive damage, even a single stimulus series increased background activity and responses to Brush at undamaged sites. 7. The background activity and responses to Brush and Pressure of all five STT cells recorded in the superficial laminae increased after repeated testing. The background activity of five STT cells recorded in the nucleus proprius also increased, but the responses of only three of the cells to Brush and Pressure increased.(ABSTRACT TRUNCATED AT 400 WORDS)


1975 ◽  
Vol 38 (1) ◽  
pp. 132-145 ◽  
Author(s):  
R. D. Foreman ◽  
A. E. Applebaum ◽  
J. E. Beall ◽  
D. L. Trevino ◽  
W. D. Willis

The responses of spinothalamic tract neurons were studied by extra- and intracellular recordings from the lumbosacral spinal cord in anesthetized rhesus monkeys (Macaca mulatta). The neurons were identified by antidromic activation from the contralateral diencephalon. They were then classified by the mildest form of mechanical stimulation applied to the ipsilateral hindlimb. The effects of electrical stimulation of the nerve(s) supplying the receptive field were investigated. Graded electrical stimulation revealed that the threshold responses of spinothalamic tract neurons excited by weak mechanical stimuli occurred when the largest afferent fibers were activated. On the other hand, neurons that required intense mechanical stimulation for their excitation tended to have higher thresholds to electrical stimulation. Some spinothalamic tract cells were shown to receive monosynaptic excitatory connections from peripheral nerve fibers, although polysynaptic connections may generally be more important. An input from unmyelinated afferent fibers was demonstrated. It is concluded the primate spinothalamic tract neurons receive a rich convergent input from a variety of cutaneous receptors. The experiments provide some evidence for the most likely types of receptors.


2019 ◽  
Vol 10 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Heidi T. Halonen ◽  
Jari A.K. Hyttinen ◽  
Teemu O. Ihalainen

Abstract High frequency (HF) mechanical vibration has been used in vitro to study the cellular response to mechanical stimulation and induce stem cell differentiation. However, detailed understanding of the effect of the mechanical cues on cellular physiology is lacking. To meet this limitation, we have designed a system, which enables monitoring of living cells by high-resolution light microscopy during mechanical stimulation by HF vibration or mechanical impacts. The system consists of a commercial speaker, and a 3D printed sample vehicle and frame. The speaker moves the sample in the horizontal plane, allowing simultaneous microscopy. The HF vibration (30–200 Hz) performances of two vehicles made of polymer and aluminum were characterized with accelerometer. The mechanical impacts were characterized by measuring the acceleration of the aluminum vehicle and by time lapse imaging. The lighter polymer vehicle produced higher HF vibration magnitudes at 30–50 Hz frequencies than the aluminum vehicle. However, the aluminum vehicle performed better at higher frequencies (60–70 Hz, 90–100 Hz, 150 Hz). Compatibility of the system in live cell experiments was investigated with epithelial cells (MDCKII, expressing Emerald-Occludin) and HF (0.56 Gpeak, 30 Hz and 60 Hz) vibration. Our findings indicated that our system is compatible with high-resolution live cell microscopy. Furthermore, the epithelial cells were remarkable stable under mechanical vibration stimulation. To conclude, we have designed an inexpensive tool for the studies of cellular biophysics, which combines versatile in vivo like mechanical stimuli with live cell imaging, showing a great potential for several cellular applications.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
T. J. Vaughan ◽  
M. Voisin ◽  
G. L. Niebur ◽  
L. M. McNamara

Mechanical loading directs the differentiation of mesenchymal stem cells (MSCs) in vitro and it has been hypothesized that the mechanical environment plays a role in directing the cellular fate of MSCs in vivo. However, the complex multicellular composition of trabecular bone marrow means that the precise nature of mechanical stimulation that MSCs experience in their native environment is not fully understood. In this study, we developed a multiscale model that discretely represents the cellular constituents of trabecular bone marrow and applied this model to characterize mechanical stimulation of MCSs in vivo. We predicted that cell-level strains in certain locations of the trabecular marrow microenvironment were greater in magnitude (maximum ε12 = ∼24,000 με) than levels that have been found to result in osteogenic differentiation of MSCs in vitro (>8000 με), which may indicate that the native mechanical environment of MSCs could direct cellular fate in vivo. The results also showed that cell–cell adhesions could play an important role in mediating mechanical stimulation within the MSC population in vivo. The model was applied to investigate how changes that occur during osteoporosis affected mechanical stimulation in the cellular microenvironment of trabecular bone marrow. Specifically, a reduced bone volume (BV) resulted in an overall increase in bone deformation, leading to greater cell-level mechanical stimulation in trabecular bone marrow (maximum ε12 = ∼48,000 με). An increased marrow adipocyte content resulted in slightly lower levels of stimulation within the adjacent cell population due to a shielding effect caused by the more compliant behavior of adipocytes (maximum ε12 = ∼41,000 με). Despite this reduction, stimulation levels in trabecular bone marrow during osteoporosis remained much higher than those predicted to occur under healthy conditions. It was found that compensatory mechanobiological responses that occur during osteoporosis, such as increased trabecular stiffness and axial alignment of trabeculae, would be effective in returning MSC stimulation in trabecular marrow to normal levels. These results have provided novel insight into the mechanical stimulation of the trabecular marrow MSC population in both healthy and osteoporotic bone, and could inform the design three-dimensional (3D) in vitro bioreactor strategies techniques, which seek to emulate physiological conditions.


1997 ◽  
Vol 757 (1) ◽  
pp. 149-154 ◽  
Author(s):  
J.Thomas Cunningham ◽  
Ruth E Wachtel ◽  
François M Abboud

Sign in / Sign up

Export Citation Format

Share Document