Human placental and fetal membrane nitric oxide synthase activity before, during and after labour at term

1995 ◽  
Vol 7 (6) ◽  
pp. 1505 ◽  
Author(s):  
Iulio JL Di ◽  
NM Gude ◽  
RG King ◽  
SP Brennecke

The aim of this study was to determine whether any labour-associated changes in nitric oxide synthase (NOS) activity occur in human placenta and fetal membranes. NOS activity in amnion, choriodecidua, and placenta obtained from women before (at Caesarean section, not in labour), during (at Caesarean section, in labour) and after (spontaneous onset labour, normal vaginal delivery) labour was assessed by measuring conversion of radio-labelled L-arginine to L-citrulline. NOS activity, as judged by its inhibition by the specific NOS inhibitor N omega-nitro-L-arginine, was present in placental and amnionic tissues, but not in choriodecidual tissue specimens. Activity detected in choriodecidua was significantly blocked during incubation with a high concentration of valine, suggesting that L-arginine was being consumed by reactions other than NOS under the experimental conditions in that tissue. There were no significant differences among the labour groups in either amnion or placental NOS activities measured in the presence of 1 microM L-arginine. Amnion NOS activity was significantly less than that in placenta. Placental V(max) and Km values (determined after removal of endogenous L-arginine) did not differ significantly among the different labour groups.

Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 169 ◽  
Author(s):  
Bihui Liu ◽  
Chengfeng Zhang ◽  
Jing Zhang ◽  
Xin Zhao

Wu Shan Shen Cha is the leaf of Malus asiatica Nakai., a special type of tea that is consumed in the same way as green tea. To study the effect of Wu Shan Shen Cha-derived flavonoids (WSSCF) on lesions in the stomach, a 15% hydrochloric acid–95% ethanol (volume ratio 4:6) solution was used to induce gastric injury in mice. The degree of gastric injury was assessed using tissue specimens, and the effects of WSSCF on the serum levels of antioxidant enzymes were investigated. The results showed that WSSCF could alleviate the damage of the gastric mucosa and gastric wall caused by the hydrochloric acid–ethanol solution, decrease the tissue and serum levels of malondialdehyde (MDA) in mice with gastric injury, and increase the serum levels of superoxide dismutase (SOD) and glutathione (GSH). The results of quantitative polymerase chain reaction (qPCR) showed that WSSCF could increase the mRNA expression of Mn-SOD, Cu/Zn-SOD, catalase (CAT), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) in tissue specimens from mice with gastric injury and decrease the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). At the same time, the results of the high concentration of WSSCF (WSSCFH) group were closer to those of the drug (ranitidine) treatment group. Wu Shan Shen Cha-derived flavonoids had a good antioxidant effect, so as to play a preventive role in alcoholic gastric injury.


2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


1995 ◽  
Vol 269 (6) ◽  
pp. H1891-H1898 ◽  
Author(s):  
T. M. McKenna ◽  
S. Li ◽  
S. Tao

Lipopolysaccharide (LPS) treatment impairs cardiac myocyte contractility in a nitric oxide synthase (NOS)-dependent manner. The objective of this study was to assess whether protein kinase C (PKC) transduces the LPS signal into an enhanced NOS activity in rat cardiac myocytes. LPS (100 ng/ml) stimulated myocyte PKC activity, inducible NOS (iNOS) expression, and NOS activity in a time- and protein synthesis-dependent fashion. Directly activating PKC with beta-phorbol 12,13-dibutyrate (beta-PDB) also induced myocyte iNOS synthesis and NOS activity and reduced electrically stimulated contractility, while the inactive alpha-PDB was ineffectual. Contractility could be restored to beta-PDB-incubated cells by superfusion with the NOS inhibitor N omega-nitro-L-arginine methyl ester. PKC blockade with sphingosine, chelerythrine, or calphostin-C precluded LPS- and beta-PDB-induced increases in NOS activity and protected contractility. Depletion of PKC by 18 h of incubation with beta-PDB in the presence of chelerythrine also blocked acquisition of enhanced NOS activity and contractile dysfunction when the myocytes were subsequently exposed to LPS. These findings suggest that PKC is a significant intracellular mediator for the effects of LPS on cardiac cell NOS activity and contractile function.


2005 ◽  
Vol 103 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Pascal C. Chiari ◽  
Martin W. Bienengraeber ◽  
Dorothee Weihrauch ◽  
John G. Krolikowski ◽  
Judy R. Kersten ◽  
...  

Background Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. Methods In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Results Isoflurane significantly (P &lt; 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. Conclusions The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.


1999 ◽  
Vol 163 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B Akesson ◽  
R Henningsson ◽  
A Salehi ◽  
I Lundquist

We have studied, by a combined in vitro and in vivo approach, the relation between the inhibitory action of N(G)-nitro-l-arginine methyl ester (L-NAME), a selective inhibitor of nitric oxide synthase (NOS), on the activity of islet constitutive NOS (cNOS) and glucose regulation of islet hormone release in mice. The cNOS activity in islets incubated in vitro at 20 mM glucose was not appreciably affected by 0.05 or 0.5 mM L-NAME, but was greatly suppressed (-60%) by 5 mM L-NAME. Similarly, glucose-stimulated insulin release was unaffected by the lower concentrations of L-NAME but greatly enhanced in the presence of 5 mM of the NOS inhibitor. In incubated islets inhibition of cNOS activity resulted in a modestly enhanced insulin release in the absence of glucose, did not display any effect at physiological or subphysiological glucose concentrations, but resulted in a markedly potentiated insulin release at hyperglycaemic glucose concentrations. In the absence of glucose, glucagon secretion was suppressed by L-NAME. The dynamics of glucose-induced insulin release and (45)Ca(2+) efflux from perifused islets revealed that L-NAME caused an immediate potentiation of insulin release, and a slight increase in (45)Ca(2+) efflux. In islets depolarized with 30 mM K(+) in the presence of the K(+)(ATP) channel opener, diazoxide, L-NAME still greatly potentiated glucose-induced insulin release. Finally, an i.v. injection of glucose to mice pretreated with L-NAME was followed by a markedly potentiated insulin response, and an improved glucose tolerance. In accordance, islets isolated directly ex vivo after L-NAME injection displayed a markedly reduced cNOS activity. In conclusion, we have shown here, for the first time, that biochemically verified suppression of islet cNOS activity, induced by the NOS inhibitor L-NAME, is accompanied by a marked potentiation of glucose-stimulated insulin release both in vitro and in vivo. The major action of NO to inhibit glucose-induced insulin release is probably not primarily linked to changes in Ca(2+) fluxes and is exerted mainly independently of membrane depolarization events.


Sign in / Sign up

Export Citation Format

Share Document