scholarly journals 301EFFECT OF THE MII-AGE AND ACTIVATION PROTOCOL ON THE PARTHENOGENETIC DEVELOPMENT OF PORCINE OOCYTES

2004 ◽  
Vol 16 (2) ◽  
pp. 270
Author(s):  
I. Lagutina ◽  
G. Lazzari ◽  
C. Galli

The completion of porcine oocyte nuclear maturation (MII) in vitro, characterized by the time of polar body extrusion, starts at about 32h of maturation and lasts more than 12h. This leads to the simultaneous presence in the population of matured oocytes with differing abilities to be activated. We investigated age-dependent changes in pig oocyte maturation, activation and development in SOFaa in response to electric impulse (EL) in the presence of cytochalasin B (CB) and EL in combination with cycloheximide and cytochalasin B (EL+CHX+CB). Oocytes were matured in TCM 199 with 10% FCS, cysteine, LH, FSH (Pergovet, Serono, Geneva, Switzerland) for 36h and then decumulated. Matured oocytes were activated at 40 and 44h by double pulse of 30μs DC 1, 5kVcm−1 and cultured in 5μgmL−1 CB for 4h or by EL followed by incubation in 10μgmL−1 CHX+5μgmL−1 CB for 4h. According to the MII-age before activation oocytes were divided into 2 age classes: 3–7 and 7–11h after polar body extrusion. Embryos were cultured in SOFaa in 5% CO2, 5% O2 at 38.5°C. The rates of cleavage, blastocyst formation and cell number of BL on Day 7 (BLD7) were recorded. Our results showed that the average rate of maturation at 44h was 72% (n=1377). About 50% and 87% of oocytes, that eventually matured, extruded the polar body at 37 and 40h, respectively. The average cell number of BLD7 developed in SOFaa was 80±36 (n=52) and was not affected by activation protocol. Seventy-nine and 27% of BL had more than 50 and 100 cells per BL, respectively. Porcine oocytes activated by EL acquired their developmental competence gradually, achieving the highest rates of cleavage and blastocyst formation 7h after polar body extrusion. By contrast, oocytes activated by EL+CHX+CB showed their maximal developmental competence earlier (3–7h group). In conclusion, we demonstrate that electric impulse in combination with CHX+CB treatment permits earlier efficient activation of porcine oocytes (3–7h after polar body extrusion).

2004 ◽  
Vol 16 (2) ◽  
pp. 272 ◽  
Author(s):  
T. Shin ◽  
T. Otoi ◽  
D.C. Kraemer ◽  
M.E. Westhusin

In order to establish an activation protocol for somatic cloning in the domestic cat, we evaluated the developmental competence of cat embryos derived from in-vitro matured ova after parthenogenetic activation treatment. The quality of parthenogenetic embryos was assessed by D3 cleavage rates, D8 rates of blastocyst formation and total nucleus numbers in expanded/hatching blastocysts. Parthenogenetic activation treatments were as follows;; Treatment I: 3.0kVcm−1 (25μs, twice) in 0.3M mannitol containing 0.1mM CaCl2· 2H2O and 0.1mM MgSO4, administered to matured cat oocytes and followed by 10μgmL−1 cycloheximide +5μgmL−1 cytochalasin B in TCM 199-Earle’s salt supplemented with 0.3% BSA for 6–7h. Treatment II: The first electric stimulation was performed as described for treatment I except that the activation medium consisted of 0.3M mannitol containing Mg, but without Ca. Two hours later, pre-pulsed MII oocytes were electropulsed by applying 1.0kVcm−1 (50μs, twice, 5s apart) in 0.3M mannitol containing Ca and Mg for additional activation, followed by culture in 10μgmL−1 cycloheximide +5μgmL−1 cytochalasin B treatment in TCM 199-Earle’s salt supplemented with 0.3% BSA for 6–7h. Immature cat oocytes were obtained from ovaries by mincing/dissection and matured in vitro for 26–30h as previously described (Gomez et al., 2001, Therigenology, 55, 472). Only MII oocytes with a 1st polar body were utilized for the activation procedure after removal of cumulus cells with 0.1% hyaluronidase by gentle pipetting. A total of 1120 oocytes were collected and the overall maturation rate was 49.8% (551/1120). After parthenogenetic activation of the MII oocytes, the embryos were cultured in vitro as described previously (Pope et al., 2000, Theriogenology, 53, 163–174). The results are shown in Table 1. Treatment II resulted in significantly higher (P<0.01) D3 cleavage rates;; however, there were no significant differences in D8 blastocyst formation and total nucleus numbers. These data suggest that an additional electric activation (Treatment II) may increase the in vitro cleavage rates compared to using a fusion and electrical stimulation simultaneously (Treatment I). In addition, we demonstrated the developmental competence of domestic cat embryos derived from in vitro maturation, activation, and culture for development to the pre-implantation stage. By using these procedures for SCNT, several pregnancies were established and a healthy cloned kitten resulted in our laboratory (Shin et al., 2002, Nature, 415, 859). Therefore, this protocol can be useful, not only for prediction of the developmental competence of domestic cat oocytes matured in vitro, but also when used with SCNT to produce cloned cats. Comparison of cleavage rates and developmental competence to blastocyst stage following parthenogenetic activation treatments in domestic cat oocytes matured in vitro


2004 ◽  
Vol 16 (2) ◽  
pp. 198
Author(s):  
N.W.K. Karja ◽  
S. Medvedev ◽  
D. Fuchimoto ◽  
A. Onishi ◽  
M. Iwamoto ◽  
...  

Kikuchi et al. (2002 Biol. Reprod. 66, 1033–1041) reported that replacement of pyruvate and lactate with glucose, as energy substrates, at 48h of culture in IVC medium enhanced the quality of IVP porcine blastocysts. However, the exact time during early cleavage stages when the utilization of glucose as an energy source is optimal has not yet been determined. The purpose of this study was to examine the effects of glucose supplementation at different times of culture on the developmental competence of IVP porcine embryos. Porcine cumulus-oocytes complexes were matured in modified NCSU-37 solution and fertilized in vitro according to Kikuchi et al. All cultures were performed at 38.5°C, 5% O2, 5% CO2, and 90% N2. In experiment 1, after being fertilized (Day 0), putative zygotes (1158 in 6 trials) were cultured in NCSU-37 supplemented with 0.4% BSA, 0.17mM sodium pyruvate, and 2.73mM sodium lactate (IVC-pyr/lac). Embryos (30–50 in each group) were then transferred into NCSU-37 supplemented with 0.4% BSA and 5.55mM D-glucose (IVC-glu) at 24, 48, 72, 96, or 118h of culture. As control groups, putative zygotes (391) were cultured in IVC-pyr/lac or IVC-glu for the whole culture period. In experiment 2, after being fertilized, putative zygotes (543 in 4 trials, 30–50 in each group) were cultured in IVC-pyr/lac, and then were transferred into IVC-glu at 48h, 53h, 58h, or 63h of culture, because glycolytic activity of in vitro-derived porcine embryos was reported to increase around the 8-cell stage, and some embryos develop to that stage before 72h of culture in experiment 1. All embryos were cultured for 6 days, and then development to the blastocyst stage and number of cells per blastocyst were assessed. When IVF embryos were cultured in IVC pyr/lac for 24h or 48h and subsequently in IVC-glu until day 6 in experiment 1, the rates of blastocyst formation were significantly higher (P<0.05, ANOVA test) than those of embryos cultured in IVC-pyr/lac for the whole culture period (24.4% and 23.0% v. 14.5%, respectively). However, when IVC pyr/lac was replaced with IVC-glu, there were no significant differences between the energy source replacement groups and the glucose-only group in terms of the proportions of cleavage, development to the blastocyst stage and mean cell number per blastocyst (P>0.05, ANOVA test) (15.2%–24.4%, and 16.8%, respectively). Replacement of pyruvate and lactate with glucose at 58h of culture in experiment 2 significantly enhanced the rate of blastocyst formation (P<0.05, ANOVA test) but not the mean cell number compared with zygotes in which the replacement was done at 48, 53, and 63h of culture (31.3% v. 20.6%, 20.8%, and 21.1%, respectively) (P<0.05, ANOVA test). In conclusion, replacement of pyruvate and lactate with glucose as energy substrates was optimal at 58h of culture for the in vitro development of pig embryos to the blastocyst stage.


2007 ◽  
Vol 19 (1) ◽  
pp. 184 ◽  
Author(s):  
T. Somfai ◽  
M. Ozawa ◽  
J. Noguchi ◽  
H. Kaneko ◽  
K. Ohnuma ◽  
...  

The present study investigated the ability of in vitro-matured (IVM) porcine oocytes to be fertilized in vitro after vitrification. Oocytes matured in vitro for 46 h according to Kikuchi et al. (2002 Biol. Reprod. 66, 1033–1041) were cryopreserved by solid surface vitrification (SSV; Dinnyes et al. 2000 Biol. Reprod. 63, 513–518) or subjected to the steps of SSV without cooling (toxicity control, TC). Oocyte viability was assessed 2 h after treatment by morphology and fluorescein diacetate staining. Live oocytes were in vitro-fertilized (IVF) and cultured (IVC) for 6 days according to Kikuchi et al. (2002). Fertilization and pronuclear development of oocytes were assessed 10 h after IVF by aceto-orcein staining. Cleavage and blastocyst rates were recorded during IVC. Glutathione (GSH) and hydrogen peroxide levels in oocytes were analyzed by DTNB-glutathione disulfide reductase recycling assay and 20,70-dichlorofluorescein fluorescence assay, respectively. Data were analyzed by ANOVA and paired t-test. The rate of live oocytes after SSV was lower compared to the control and the TC groups (54.4%, 100%, and 100%, respectively; P < 0.05). Sperm penetration rates of SSV oocytes were lower than those of the control group (51.9% and 67.8%, respectively; P < 0.05). Significantly fewer penetrated oocytes in the SSV group formed male pronuclei than those in the control and the TC groups (66.7%, 96.5%, and 98.5%, respectively; P < 0.05). There were no differences in second polar body extrusion and monospermy rates between the treatment groups. The cleavage rate of SSV oocytes was significantly lower than that of the control and the TC groups (13.3%, 46.6%, and 47.7%, respectively; P < 0.05). Blastocyst rates of control and TC oocytes were similar (20.7% and 23.6%, respectively), whereas only a single embryo developed to the blastocyst stage in the SSV group. GSH content of SSV oocytes was significantly lower than that of the control oocytes (7.3 pM and 10.5 pM, respectively), whereas the peroxide level was higher in SSV oocytes than in the control oocytes (59.0 and 50.5 FIU, respectively; P < 0.05). Our results reveal a cryopreservation-related drop of intracellular GSH level in oocytes, which may cause their decreased ability to form a male pronucleus and their increased sensitivity to oxidative stress. These factors might contribute to the low developmental competence of vitrified oocytes. This work was supported by a grant-in-aid for the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers (P05648) and the Bilateral Scientific and Technological Collaboration Grant between Hungary and Japan (TET, no. JAP-11/02).


2008 ◽  
Vol 20 (1) ◽  
pp. 102
Author(s):  
N. Maedomari ◽  
K. Kikuchi ◽  
M. Fahrudin ◽  
N. Nakai ◽  
M. Ozawa ◽  
...  

Metaphase-II chromosome transfer (M-II transfer) of oocytes is considered to be one of the advanced procedures to improve fertilization and developmental abilities of oocytes with poor cytoplasmic maturation. The aim of this study was to investigate the developmental capacity after IVF and IVC of porcine oocytes reconstructed from karyoplasts and cytoplasts produced by centri-fusion (Fahrudin et al. 2007 Cloning Stem Cells 9, 216–228). In brief, IVM oocytes (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041) with a visible first polar body were centrifuged at 13 000g for 9 min to stratify the cytoplasm. Then the zonae pellucidae were removed with pronase treatment. Zona-free oocytes were layered on a 300-µL discontinuous gradient of Percoll in TCM-HEPES with 5 µg mL–1 of cytochalasin B. After centrifugation at 6000g for 4 s, fragmented cytoplasms with approximately equal volumes were obtained, stained with Hoechst-33342, and classified into cytoplasm with (K; karyoplast) or without (C; cytoplast) chromosomes. One karyoplast was fused with 0, 1, 2, 3, and 4 cytoplasts (K, K + 1C, K + 2C, K + 3C, and K + 4C, respectively) by an electric stimulation with a single DC pulse (1.5 kV cm–1 for 20 µs) and cultured for 1 h. Zona-free oocytes without any reconstruction served as control oocytes. The diameters of the reconstructed and control oocytes were measured. All specimens were fertilized in vitro with frozen–thawed boar sperm, and cultured using the well of the well (WOW) system (Vajta et al. 2000 Mol. Reprod. Dev. 55, 256–264). Their fertilization status and developmental competence were examined. Data were analyzed by ANOVA followed by Duncan's multiple range tests. The diameter differed significantly among K to K + 4C oocytes (75.0–127.1 µm; P < 0.05), whereas the diameter of K + 2C oocytes was similar to that of the control oocytes (110.5 µm). Regardless of the cytoplast volume, sperm penetration rates (73.1–93.8%) for K to K + 4C oocytes were not significantly different compared to control oocytes (78.0%). Male pronuclear formation rates of K to K + 4C oocytes (92.3–97.1%) were also not different significantly different compared to control oocytes (96.6%). However, monospermy rates of K oocytes was significantly higher (61.6%; P < 0.05) than those of the reconstructed (K + 1C to K + 4C; 18.2–34.9%) and control oocytes (32.9%). The blastocyst formation rates in K, K + 1C, K + 2C, and K + 3C groups (0.0–9.8%; P < 0.05) were significantly lower than those in the control and K + 4C groups (17.8% and 15.3%, respectively; P < 0.05). The total cell numbers per blastocyst in K + 1C and K + 2C groups (7.5 and 8.3 cells, respectively) were significantly lower than in the control, K + 3C, and K + 4C groups (15.3–26.2 cells; P < 0.05). These results suggest that the cytoplast volume of porcine M-II transferred oocytes, produced by reconstruction from a karyoplast and cytoplast(s) and centri-fusion, is important for their ability to develop to the blastocyst stage and influences cell number.


2011 ◽  
Vol 23 (1) ◽  
pp. 207
Author(s):  
C. Kohata ◽  
H. Funahashi

The maturation rate of oocytes derived from small follicles (SF) is known to be lower than that of oocytes from medium follicles (MF). The objective of this study was to assess the fertilizability and developmental competence of mature SF oocytes that were selected by the presence of the first polar body. Cumulus–oocyte complexes (COC) were aspirated from SF (1 to 2 mm in diameter) or MF (3 to 6 mm in diameter) of prepuberal ovaries. The COC were cultured in modified porcine oocyte medium supplemented with gonadotropins and dibutyryl cAMP for the first 20-h period and then in gonadotropin-free and dibutyryl cAMP-free porcine oocyte medium for another 24 h. Following IVM culture, mature oocytes with the first polar body were selected under a stereomicroscope, co-incubated with spermatozoa in a drop of modified TCM-199 containing 0.4% BSA and 5 mM caffeine for 6 h, and then incubated in porcine zygote medium-5 for 7 days. Sperm penetration, cleavage, and early development of the oocytes were examined before culture in porcine zygote medium-5 on Days 2 and 7 of culture. To analyse the fertilizability and developmental competence of oocytes from the SF and MF groups, sperm penetration, pronuclear formation, cleavage, blastocyst formation, and mean cell number in a blastocyst (as determined by fluorescence observation following Hoechst 33342 staining) were examined. Statistical analysis was performed by ANOVA with a Bonferroni-Dunn post-hoc test (P < 0.05). The percentages of oocytes in which the first polar body could be observed were 51.0 ± 4.5% and 78.5 ± 2.8% for SF- and MF-oocytes, respectively, whereas the maturation rates were 83.8 ± 4.0% and 62.8 ± 4.4% following fixation and staining. When only mature oocytes were co-cultured with sperm for 6 and 9 h, sperm penetration, monospermic penetration, and pronuclear formation were not different (P > 0.33) between mature SF- and MF-oocytes. Although there was no difference in cleavage rates between the mature SF- and MF-oocyte groups, blastocyst formation rate and mean cell number in the blastocyst were higher in mature MF-oocytes (31.0 ± 3.6% and 38.7 ± 1.9 cells, respectively) than in mature SF-oocytes (14.7 ± 3.2% and 31.2 ± 2.0 cells). From these results, we conclude that mature oocytes derived from SF have a similar fertilizability when compared with mature MF-oocytes, but the developmental competence to the blastocyst stage following IVF is significantly lower in mature SF-oocytes than in mature MF-oocytes.


2017 ◽  
Vol 29 (1) ◽  
pp. 192
Author(s):  
P. Ferré ◽  
K. X. Nguyen ◽  
T. Wakai ◽  
H. Funahashi

This experiment was undertaken to assess the meiotic and developmental competences of oocytes derived from different sized follicles and denuded of cumulus cells 0, 20, and 44 h after the start of culture for in vitro maturation (IVM). Groups of 60 oocyte-cumulus complexes from small- (SF; <3 mm) and medium-sized follicles (MF; 3–6 mm) were cultured for IVM in porcine oocyte medium with 50 μM β-mercaptoethanol supplemented with 1 mM dibutyryl-cyclic adenosine monophosphate, 10 IU mL−1 of eCG, and 10 IU mL−1 of hCG for 20 h at 39°C and 5% CO2 in air. Then, after washing, they continued culture in fresh β-mercaptoethanol without dibutyryl-cyclic adenosine monophosphate and gonadotropins under the same conditions for another 24 h. At 0, 20, and 44 h of IVM, cumulus cells were removed with 0.1% (wt/vol) hyaluronidase and the denuded oocytes continued IVM culture following the protocol. Mature oocytes with the first polar body were selected, parthenogenetically activated with a single electrical pulse (DC: 1.2 kV/cm, 30 µs), incubated with 4% (wt/vol) BSA and 5 μM cytochalasin B for 4 h, and cultured in porcine zygote medium for 5 days. Cleavage and blastocyst formation rates were observed on Day 2 and 5, respectively. Blastocysts were stained with 4’,6-diamidino-2-phenylindole for cell count assessment. The experiment was replicated 5 times and analysed with a 1- or 2-way ANOVA. If P < 0.05 in ANOVA, a Tukey multiple comparisons test was performed. Regardless of the time of cumulus cell removal, oocytes from MF had significantly higher in rates of maturation, cleavage, and blastocyst rates, as compared with those from SF, whereas there were no significant differences in the cell number of blastocysts between SF and MF (32 v. 34 cells, respectively). When oocytes were denuded before IVM culture, rates of oocyte maturation (37.6% in SF and 50.8% in MF), and blastocyst formation (2.7% in SF and 27.3% in MF) were significantly lower than controls (51.2% in SF and 76% in MF; 25.8% in SF and 48.5% in MF, respectively). When oocytes were denuded 20 h after the start of IVM, oocyte maturation rates were significantly increased (64.1% in SF and 82.5% in MF) as compared with controls, whereas no significant differences were observed in cleavage and blastocyst formation rates in comparison with controls. These results conclude that removing cumulus cells from oocyte-cumulus complexes 20 h after the start of IVM improves the meiotic competence of oocytes derived from both SF and MF, without any reduction of developmental competence of the oocytes following parthenogenetical activation.


Reproduction ◽  
2006 ◽  
Vol 132 (4) ◽  
pp. 559-570 ◽  
Author(s):  
Tamás Somfai ◽  
Manabu Ozawa ◽  
Junko Noguchi ◽  
Hiroyuki Kaneko ◽  
Katsuhiko Ohnuma ◽  
...  

We investigated nuclear progression and in vitro embryonic development after parthenogenetic activation of porcine oocytes exposed to cytochalasin B (CB) during in vitro maturation (IVM). Nuclear progression was similar in control oocytes and oocytes matured in the presence of 1 μg/ml CB (IVM-CB group) by 37 h IVM; at this time the proportion of oocytes that had reached or passed through the anaphase-I stage did not differ significantly between the IVM-CB and the control groups (61.3 and 69.9% respectively; P < 0.05). After IVM for 37 h, no polar body extrusion was observed in the IVM-CB group. In these oocytes, the two lumps of homologous chromosomes remained in the ooplasm after their segregation and turned into two irregular sets of condensed chromosomes. By 41 h IVM, the double sets of chromosomes had reunited in 89.5% IVM-CB oocytes and formed a single large metaphase plate, whereas 68.8% of the control oocytes had reached the metaphase-II stage by this time. When IVM-CB oocytes cultured for 46 h were stimulated with an electrical pulse and subsequently cultured for 8 h without CB, 39.0% of them extruded a polar body and 82.9% of them had a female pronucleus. Chromosome analysis revealed that the majority of oocytes that extruded a polar body were diploid in both the control and the IVM-CB groups. However, the incidence of polyploidy in the IVM-CB group was higher than that in the control group (P < 0.05). In vitro development of diploid parthenotes in the control and the IVM-CB groups was similar in terms of blastocyst formation rates (45.8 and 42.8% respectively), number of blastomeres (39.9 and 44.4 respectively), the percentage of dead cells (4.3 and 2.9% respectively), and the frequency of apoptotic cells (7.3 and 6.3% respectively). Tetraploid embryos had a lower blastocyst formation rate (25.5%) and number of cells (26.2); however, the proportion of apoptotic nuclei (7.0%) was similar to that in diploid parthenotes. These results suggest that the proportion of homozygous and heterozygous genes does not affect in vitro embryo development to the blastocyst stage.


Zygote ◽  
2015 ◽  
Vol 24 (4) ◽  
pp. 537-548 ◽  
Author(s):  
Arash Veshkini ◽  
Ali Akbar Khadem ◽  
Abdollah Mohammadi-Sangcheshmeh ◽  
Ali Asadi Alamouti ◽  
Masoud Soleimani ◽  
...  

SummaryThe effects of α-linolenic acid (ALA) on developmental competence of oocytes in goats were evaluated in this study. Initially, the level of ALA in small and large antral follicles was determined to be in a range of 0.018–0.028 mg/ml (64.6–100.6 μM, respectively).In vitromaturation was performed in the presence of various concentrations (10, 50, 100, or 200 μM) of ALA. Cumulus expansion, meiotic maturation, levels of intracellular glutathione (GSH), embryonic cleavage, blastocyst formation following parthenogenetic activation (PA) andin vitrofertilization (IVF), number of total and apoptotic cells in blastocyst, and expression ofBax, Bcl-2, and p53 genes in blastocyst cells were determined. Compared with the control, no improvement was observed in cumulus expansion in ALA-treated groups. At 50 μM concentration, ALA increased meiotic maturation rate but had no effect on GSH level. When oocytes treated with 50 μM ALA were subsequently used for PA or IVF, a higher rate of blastocyst formation was observed, and these embryos had a higher total cell number and a lower apoptotic cell number. Expression analyses of genes in blastocysts revealed lesser transcript abundances forBaxgene, and higher transcript abundances forBcl-2gene in 50 μM ALA group. Expression ofp53gene was also less observed in ALA-treated blastocysts. Our results show that ALA treatment at 50 μM duringin vitromaturation (IVM) had a beneficial effect on maturation of goat oocytes and this, in turn, stimulated embryonic development and regulated apoptotic gene expression.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eunhye Kim ◽  
Lian Cai ◽  
Sang-Hwan Hyun

Stem cell factor (SCF), also known as c-Kit ligand, plays an important role in the proliferation of primordial germ cells and the survival of oocytes during follicular development. The aim of this study was to investigate the effect of SCF/c-Kit signaling on in vitro maturation (IVM) of porcine oocytes by analyzing nuclear and cytoplasmic maturation, oocyte size, cumulus cell expansion, and developmental competence to the blastocyst stage. Moreover, mRNA expression patterns of porcine cumulus cells and oocytes were evaluated using qRT-PCR. Following 42 h of IVM, 10 and 50 ng/mL SCF-treated groups exhibited significantly (P &lt; 0.05) increased polar body extrusion rates and intracellular glutathione levels compared with the control group. The cumulus expansion index significantly (P &lt; 0.05) increased in all SCF-treated groups compared with the control samples. mRNA levels of the proapoptotic gene Bax and apoptosis-related cysteine peptidase Caspase3 were lower in SCF-treated cumulus cells than in the control group. Notably, the diameter of oocytes after IVM, the mRNA expression of well-known oocyte-secreted factors (GDF9 and BMP15), and an oocyte-specific protein essential for ovulation and oocyte health (YBX2) were significantly (P &lt; 0.05) higher in SCF-treated than in non-treated oocytes. Inhibition of c-Kit during porcine IVM using ACK2, an antagonistic blocker of c-Kit, significantly (P &lt; 0.05) decreased the polar body extrusion rate compared with the control, as well as blastocyst formation rate compared with the 10 ng/mL SCF-treated group. In conclusion, the effect of SCF/c-Kit-mediated signaling during porcine IVM could be ascribed to the reduced expression of apoptosis-related genes and higher expression of oocyte-specific/secreted factors.


2008 ◽  
Vol 20 (1) ◽  
pp. 145
Author(s):  
H. J. Kim ◽  
S. R. Cho ◽  
C. Y. Choe ◽  
S. H. Choi ◽  
D. S. Son ◽  
...  

The objective of this study was to examine the selection effects of in vitro matured porcine follicular oocytes with polar body extrusion and early cleavage as a non-invasive marker to know the developmental competence in advance. Porcine oocytes matured for 48 h and then examined for polar body extrusion. The examined oocytes were matured for an additional 16–18 h, activated with 7% ethanol, and cultured in 5 µg mL–1 cytochalasin B for 5 h for diploid formation. The treated oocytes were examined for cleavage after 48 h and continued culturing for 5 days. Each treatment was replicated by 3–4 times. Oocytes of 21.9% (70/320) were discarded in morphological selection, and 32.1% (167/520) oocytes were discarded by failure of first polar body extrusion. The selected oocytes were matured and activated, and after 48 h, the cleavage rate was examined. In morphologically selected oocytes, 15.8% (30/190) were not cleaved, 52.6% (100/190) were normally cleaved (consisted of 2–7 cells), and 31.6% (60/190) were hyper-cleaved (consisted of 8 cells or more) at 48 h after activation. However, in the first polar body extruded oocytes, 7.1% (18/253) were not cleaved, 73.1% (185/253) were normally cleaved, and 19.8% (50/253) were hyper-cleaved. From the morphologically selected oocytes, 16.7% (10/60) were developed up to blastocyst stage from those in which cleavage selection was not performed and 31.7% (19/60) from those in which cleavage selection was performed. From the polar body extruded oocytes, 39.0% (39/100) were developed up to blastocyst stage from those in which cleavage selection was not performed and 49.0% (49/100) from those in which cleavage selection was performed. Cleavage was examined within 12 h interval after activation (0 = time of activation) up to 48 h. At 0–12, 12–24, 24–36, and 36–48 h intervals, 4.1% (9/220), 68.6% (151/220), 19.1% (42/220), and 2.3% (5/220) oocytes were cleaved, respectively, and 5.9% (13/220) oocytes were not cleaved at 48 h after activation. The cleaved embryos in each interval were cultured and developed up to blastocyst with 0 (0/9), 39.1 (59/151), 9.5 (4/42), and 0% (0/5), respectively. This result suggests that the polar body extruded and cleaved at 12–36 h embryo has higher developmental potential than the others.


Sign in / Sign up

Export Citation Format

Share Document