333 DYNAMICS OF MITOGEN-ACTIVATED PROTEIN KINASE ACTIVITY IN PIG OOCYTES FOLLOWING PARTHENOGENETIC ACTIVATION BY DIFFERENT METHODS

2007 ◽  
Vol 19 (1) ◽  
pp. 282
Author(s):  
L. Nanassy ◽  
K. Lee ◽  
A. Javor ◽  
Z. Machaty

Cell cycle progression during mitosis and meiosis is known to be regulated by the M-phase promoting factor (MPF). However, recent findings revealed that mitogen-activated protein kinase (MAPK) also plays an important regulatory role during transition through the cell cycle. At fertilization the activity of MAPK drops shortly after MPF inactivation; the objective of this study was to investigate the dynamics of MAPK activity in pig oocytes after different activation methods. In vitro-matured oocytes were allocated to 3 groups. In group 1 (EP), the oocytes were activated by 2 DC pulses of 1.2 kV cm-1, 60 �s each. In the second group (EP + BU), the oocytes were electroporated and incubated for 4 h in 100 �M butyrolactone I (BU, an inhibitor of cdc2 kinase). In group 3 (EP + CHX), the oocytes were electroporated and treated for 5 h with 10 �g mL-1 cycloheximide (CHX, a protein synthesis inhibitor). After electroporation all oocytes were incubated in 7.5 �g mL-1 cytochalasin B for 4 h. Some oocytes were used to determine MAPK activity at 0, 1, 2, 3, 4, 5, and 6 h after electroporation using a MAPK assay kit. The assay measures MAPK activity by determining the phosphorylation of myelin basic protein by MAPK using the transfer of the γ-phosphate of [γ-32P] ATP. Pronuclear formation was evaluated at 6 h after electroporation; blastocyst formation and total cell numbers per embryo were determined after a 7-day culture in PZM-3 medium. Pronuclear formation was compared by the chi-square test, blastocyst formation was assessed using ANOVA, and the kinase activity was evaluated using the Student t-test. Pronuclear formation was highest in the combined methods [69.39% (EP) vs. 86.32% (EP + BU) and 87.56 % (EP + CHX); P < 0.05]. Similarly, the combined methods supported better development to the blastocyst stage [25.06 � 7.96% (EP), 58.32 � 7.62% (EP + BU), and 63.91 � 6.35% (EP + CHX); P < 0.05], whereas the average cell numbers of the blastocysts did not differ (47.11 � 3.12, 46.56 � 2.33, and 44.04 � 1.86, respectively). The initial MAPK activity was 0.123 � 0.017 pmol/min/oocyte which, after 1 h, dropped in all cases to values of 0.069 � 0.009 (EP), 0.072 � 0.007 (EP + BU), and 0.077 � 0.012 (EP + CHX) pmol/min/oocyte (P < 0.05). The MAPK activity in the EP group reached its lowest level at 3 h (0.057 � 0.007 pmol/min/oocyte); however, at 4 h it started to recover and by 6 h the activity (0.079 � 0.022 pmol/min/oocyte) did not differ from that of the non-activated oocytes. In the other groups, MAPK activity stayed low, and by the end of the experimental period it was significantly lower than that in the nontreated metaphase II oocytes (P < 0.05). The results indicate that electroporation followed by protein kinase inhibition or protein synthesis inhibition leads to the efficient inactivation of MAPK activity, and confirm our earlier findings that these combined treatments support superior embryo development after oocyte activation.

2000 ◽  
Vol 20 (17) ◽  
pp. 6323-6333 ◽  
Author(s):  
Pietro Formisano ◽  
Francesco Oriente ◽  
Francesca Fiory ◽  
Matilde Caruso ◽  
Claudia Miele ◽  
...  

ABSTRACT In L6 muscle cells expressing wild-type human insulin receptors (L6hIR), insulin induced protein kinase Cα (PKCα) and β activities. The expression of kinase-deficient IR mutants abolished insulin stimulation of these PKC isoforms, indicating that receptor kinase is necessary for PKC activation by insulin. In L6hIR cells, inhibition of insulin receptor substrate 1 (IRS-1) expression caused a 90% decrease in insulin-induced PKCα and -β activation and blocked insulin stimulation of mitogen-activated protein kinase (MAPK) and DNA synthesis. Blocking PKCβ with either antisense oligonucleotide or the specific inhibitor LY379196 decreased the effects of insulin on MAPK activity and DNA synthesis by >80% but did not affect epidermal growth factor (EGF)- and serum-stimulated mitogenesis. In contrast, blocking c-Ras with lovastatin or the use of the L61,S186 dominant negative Ras mutant inhibited insulin-stimulated MAPK activity and DNA synthesis by only about 30% but completely blocked the effect of EGF. PKCβ block did not affect Ras activity but almost completely inhibited insulin-induced Raf kinase activation and coprecipitation with PKCβ. Finally, blocking PKCα expression by antisense oligonucleotide constitutively increased MAPK activity and DNA synthesis, with little effect on their insulin sensitivity. We make the following conclusions. (i) The tyrosine kinase activity of the IR is necessary for insulin activation of PKCα and -β. (ii) IRS-1 phosphorylation is necessary for insulin activation of these PKCs in the L6 cells. (iii) In these cells, PKCβ plays a unique Ras-independent role in mediating insulin but not EGF or other growth factor mitogenic signals.


Sign in / Sign up

Export Citation Format

Share Document