scholarly journals Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts

1999 ◽  
Vol 96 (20) ◽  
pp. 11335-11340 ◽  
Author(s):  
J. H. Wright ◽  
E. Munar ◽  
D. R. Jameson ◽  
P. R. Andreassen ◽  
R. L. Margolis ◽  
...  
2007 ◽  
Vol 19 (1) ◽  
pp. 282
Author(s):  
L. Nanassy ◽  
K. Lee ◽  
A. Javor ◽  
Z. Machaty

Cell cycle progression during mitosis and meiosis is known to be regulated by the M-phase promoting factor (MPF). However, recent findings revealed that mitogen-activated protein kinase (MAPK) also plays an important regulatory role during transition through the cell cycle. At fertilization the activity of MAPK drops shortly after MPF inactivation; the objective of this study was to investigate the dynamics of MAPK activity in pig oocytes after different activation methods. In vitro-matured oocytes were allocated to 3 groups. In group 1 (EP), the oocytes were activated by 2 DC pulses of 1.2 kV cm-1, 60 �s each. In the second group (EP + BU), the oocytes were electroporated and incubated for 4 h in 100 �M butyrolactone I (BU, an inhibitor of cdc2 kinase). In group 3 (EP + CHX), the oocytes were electroporated and treated for 5 h with 10 �g mL-1 cycloheximide (CHX, a protein synthesis inhibitor). After electroporation all oocytes were incubated in 7.5 �g mL-1 cytochalasin B for 4 h. Some oocytes were used to determine MAPK activity at 0, 1, 2, 3, 4, 5, and 6 h after electroporation using a MAPK assay kit. The assay measures MAPK activity by determining the phosphorylation of myelin basic protein by MAPK using the transfer of the γ-phosphate of [γ-32P] ATP. Pronuclear formation was evaluated at 6 h after electroporation; blastocyst formation and total cell numbers per embryo were determined after a 7-day culture in PZM-3 medium. Pronuclear formation was compared by the chi-square test, blastocyst formation was assessed using ANOVA, and the kinase activity was evaluated using the Student t-test. Pronuclear formation was highest in the combined methods [69.39% (EP) vs. 86.32% (EP + BU) and 87.56 % (EP + CHX); P < 0.05]. Similarly, the combined methods supported better development to the blastocyst stage [25.06 � 7.96% (EP), 58.32 � 7.62% (EP + BU), and 63.91 � 6.35% (EP + CHX); P < 0.05], whereas the average cell numbers of the blastocysts did not differ (47.11 � 3.12, 46.56 � 2.33, and 44.04 � 1.86, respectively). The initial MAPK activity was 0.123 � 0.017 pmol/min/oocyte which, after 1 h, dropped in all cases to values of 0.069 � 0.009 (EP), 0.072 � 0.007 (EP + BU), and 0.077 � 0.012 (EP + CHX) pmol/min/oocyte (P < 0.05). The MAPK activity in the EP group reached its lowest level at 3 h (0.057 � 0.007 pmol/min/oocyte); however, at 4 h it started to recover and by 6 h the activity (0.079 � 0.022 pmol/min/oocyte) did not differ from that of the non-activated oocytes. In the other groups, MAPK activity stayed low, and by the end of the experimental period it was significantly lower than that in the nontreated metaphase II oocytes (P < 0.05). The results indicate that electroporation followed by protein kinase inhibition or protein synthesis inhibition leads to the efficient inactivation of MAPK activity, and confirm our earlier findings that these combined treatments support superior embryo development after oocyte activation.


2003 ◽  
Vol 14 (7) ◽  
pp. 3013-3026 ◽  
Author(s):  
Tatiana Yuzyuk ◽  
David C. Amberg

Osmotic stress causes actin cytoskeleton disassembly, a cell cycle arrest, and activation of the high osmolarity growth mitogen-activated protein kinase pathway. A previous study showed that Ssk2p, a mitogen-activated protein kinase kinase kinase of the high osmolarity growth pathway, promotes actin cytoskeleton recovery to the neck of late cell cycle, osmotically stressed yeast cells. Data presented herein examined the role of Ssk2p in actin recovery early in the cell cycle. We found that actin recovery at all stages of the cell cycle is not controlled by Ssk1p, the known activator of Ssk2p, but required a polarized distribution of Ssk2p as well as its actin-interacting and kinase activity. Stress-induced localization of Ssk2p to the neck required the septin Shs1p, whereas localization to the bud cortex depended on the polarity scaffold protein Spa2p. spa2Δ cells, like ssk2Δ cells, were defective for actin recovery from osmotic stress. These spa2Δ defects could be suppressed by overexpression of catalytically active Ssk2p. Furthermore, Spa2p could be precipitated by GST-Ssk2p from extracts of osmotically stressed cells. The Ssk2p mediated actin recovery pathway seems to be conserved; MTK1, a human mitogen-activated protein kinase kinase kinase of the p38 stress response pathway and Ssk2p homolog, was also able to localize at polarized growth sites, form a complex with actin and Spa2p, and complement actin recovery defects in osmotically stressed ssk2Δ and spa2Δ yeast cells. We hypothesize that osmotic stress-induced actin disassembly leads to the formation of an Ssk2p–actin complex and the polarized localization of Ssk2p. Polarized Ssk2p associates with the scaffold protein Spa2p in the bud and Shs1p in the neck, allowing Ssk2p to regulate substrates involved in polarized actin assembly.


2007 ◽  
Vol 18 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Timothy N. Feinstein ◽  
Adam D. Linstedt

Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G2/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle “checkpoint.” A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G2 to control G2/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G2 Golgi unlinking and the G2/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document