130 EFFECT OF HYALURONIC ACID SUPPLEMENTATION ON OVINE EMBRYO DEVELOPMENT IN VITRO AND ON SURVIVAL AFTER VITRIFICATION

2013 ◽  
Vol 25 (1) ◽  
pp. 212
Author(s):  
J. M. Kelly ◽  
D. O. Kleemann ◽  
S. K. Walker

Studies have shown that supplementation with hyaluronic acid (HA), a glycosaminoglycan found in mammalian follicular, oviduct, and uterine fluids, improves in vitro development and post-thaw survival of bovine embryos. In this study, we examined the effect of HA supplementation on ovine embryo development and on survival after vitrification using the minimum volume cooling (MVC) cryotop method. Abattoir sourced ovine oocytes were in vitro matured and fertilized as per routine procedures (Walker et al. 1996 Biol. Reprod. 55, 703–708). In Experiment 1 (5 replicates), presumptive zygotes were randomly allocated to IVC medium supplemented with 0.8 mg mL–1 BSA, amino acids, and 0, 0.5, 1.0, 1.5 or 2.0 mg mL–1 HA. Cleavage rates were recorded and blastocyst development evaluated on Day 7 (Day 0 = day of IVF). In Experiment 2 (3 replicates), presumptive zygotes were placed in in vitro culture (IVC) medium with or without 1.0 mg mL–1 HA. Embryos were vitrified using the MVC cryotop method (Kelly et al. 2004 Reprod. Fert. Dev. 16, 172) on either Day 5 (morula–blastocyst stages), Day 6 (compact morula–hatching blastocyst stages), or Day 7 (blastocyst–hatching blastocyst stages). Vitrified embryos were thawed 7 days later and placed into IVC medium. Embryo survival (assessed by blastocoele re-expansion) and hatching rates were recorded on Day 8. Variables were assessed using procedure CATMOD in SAS (SAS Institute Inc., Cary, NC, USA). In Experiment 1, the addition of HA did not affect cleavage or blastocyst formation rates but hatching rates were significantly (P < 0.05) improved at concentrations of 0.5 to 1.5 mg mL–1 (Table 1). In Experiment 2, HA supplementation (1.0 mg mL–1) compared with control medium did not affect cleavage (96.8 and 97.1%, respectively) or blastocyst formation rates (68.6 and 70.2%, respectively). HA significantly (P < 0.05) improved survival after thawing of embryos vitrified on Day 5 (100 v. 85.6%, n = 85 and 90). However no effect was observed when embryos were vitrified on either Day 6 (97.8 v. 97.8%, n = 91 and 92) or Day 7 (96.7 v. 97.9%, n = 92 and 94). Within day, HA supplementation did not affect hatching rate compared with control medium (Day 5, 54.1 v. 53.2%; Day 6, 62.9 v. 65.6%; Day 7, 71.9 v. 62.0%, respectively). These results demonstrate that HA supplementation of IVC medium significantly improves hatching rate of ovine embryos and we speculate that this improvement may correlate with comparable improvements in pregnancy rates after transfer. Hyaluronic acid binds to CD44, a glycoprotein expressed on the surface of preimplantation ovine embryos and shown to play a role on embryo development (Luz et al. 2012 Genet. Mol. Res. 11, 799–809). Hyaluronic acid plays a role in cell migration and we suggest that, in the early blastocyst, it affords an advantage to the trophectoderm cells. Table 1.Effect of hyaluronic acid (HA) supplementation in IVC medium on cleavage, blastocyst, and hatching rates

2008 ◽  
Vol 20 (1) ◽  
pp. 200
Author(s):  
T. H. C. De Bem ◽  
R. Rochetti ◽  
P. R. L. Pires ◽  
F. F. Bressan ◽  
P. R. Adona ◽  
...  

Prematuration provides an additional time for oocyte capacitation and maturation in an attempt to improve in vitro embryo production (IVP) rates and allows media supplementation during this period for IVP. The aim of this study was to use brain-derived neurotropic factor (BDNF) in prematuration to improve maturation of bovine oocytes subjected to parthenogenetic activation and cultured with different media. Oocytes were subjected to prematuration in TCM-199 medium supplemented with 10 µm butyrolactone I, 2.0 mm pyruvate, and 10 µg mL–1 gentamicin for 24 h in the absence of BDNF (control) or in the presence of 10 ng mL–1 BDNF (BD). Oocytes were then in vitro-matured (IVM) in TCM-199 medium supplemented with 10% FCS, 0.5 µg mL–1 FSH, 5.0 µg mL–1 LH, 2.0 mm pyruvate, and 10 µg mL–1 gentamicin at 38.5�C under 5% CO2 in air. After 19 h oocytes were denuded using hyaluronidase and vortexing for 3 min for the 1st polar body (1PB) selection. Those which extruded the 1PB were maintained in IVM until 26 h, when parthenogenetic activation was performed (5 min in 5 µm ionomycin, followed by 3 h in 2 mm 6-DMAP). Activated oocytes were then transferred to in vitro culture (IVC) for embryo development evaluation. Embryos from both groups were cultured in SOF medium with 2.5% FCS, 0.05 g mL–1 BSA, 0.2 mm pyruvate, and 10 mg mL–1 gentamicin. Cleavage rates on the second day of in vitro culture (D2), embryo production at Days 7 and 8 (D7 and D8), and hatching rate at Day 8 were evaluated. Data regarding 1PB extrusion, cleavage, blastocyst development on D7 and D8, and blastocyst D8 hatching rates of three replicates were analyzed by chi-square test at 5% significance using the BIOESTATS 4.0 software. Control and BD, respectively, did not show differences (P > 0.05) regarding 1PB extrusion (n = 164, 63.81%, and n = 175, 66.79%) or cleavage (n = 117, 71.34%, and n = 138, 78.86%). However, for control and BD, respectively, blastocyst development on D7 (n = 63, 38.41%, and n = 89, 50.86%), D8 (n = 63, 38.41%, and n = 91, 52.00%), and hatching on D8 (n = 22, 34.92%, and n = 39, 43.82%) were all significantly higher for BD when compared with control (P < 0.05). In conclusion, BDNF during prematuration improved in vitro embryo development by increasing blastocyst and hatching rates of parthenogenetic embryos.


2014 ◽  
Vol 26 (1) ◽  
pp. 138 ◽  
Author(s):  
A. Ruiz ◽  
P. J. Hansen ◽  
J. Block

The overall objective was to determine the effects of addition of lipid metabolic regulators during embryo culture on blastocyst development and survival following cryopreservation. For Experiment 1, embryos produced in vitro were cultured in 5% (vol/vol) oxygen in SOF-bovine embryo 1 (SOF-BE1) medium supplemented with or without 100 μM trans-10,cis-12 conjugated linoleic acid (CLA) and 0.3 μM phenazine ethosulfate (PES). Treatment with CLA began at the initiation of culture, whereas treatment with PES began at Day 3 after insemination. At Day 7 after insemination, the proportion of oocytes that developed to the blastocyst and advanced blastocyst (expanded, hatching, or hatched) stages was recorded. Blastocysts and expanded blastocyst-stage embryos were harvested and slow frozen in 1.5 M ethylene glycol. Embryos were thawed and then cultured for 72 h in SOF-BE1 medium containing 10% (vol/vol) fetal bovine serum and 50 μM dithiothreitol. Re-expansion and hatching rates were recorded at 24, 48, and 72 h. Addition of CLA had no effect on embryo development, whereas PES reduced (P < 0.01) development to the blastocyst (26.0 ± 0.8 v. 22.1 ± 0.8%) and advanced blastocyst (19.2 ± 0.9 v. 14.4 ± 0.9%) stages. Blastocysts cultured in the presence of CLA had higher (P < 0.05) re-expansion rates at 24, 48, and 72 h (50.8 ± 3.7 v. 65.7 ± 3.7%, 57.2 ± 4.0 v. 72.0 ± 4.05%, and 57.2 ± 4.0 v. 72.0 ± 4.0%, respectively). Addition of CLA tended (P < 0.07) to increase the hatching rate at 24 h and did increase (P < 0.05) the hatching rate at 48 h (12.4 ± 1.3 v. 16.2 ± 1.3% and 39.0 ± 3.2 v. 50.0 ± 3.2%, respectively). Treatment with PES had no effect on re-expansion rates but reduced (P < 0.05) hatching rates at 24 and 48 h (18.2 ± 1.3 v. 10.3 ± 1.3 and 50.2 ± 3.2 v. 38.8 ± 3.2%, respectively). There was no interaction between CLA and PES affecting embryo development or cryosurvival. For Experiment 2, embryos were produced in vitro as in Experiment 1 and cultured in SOF-BE1 medium with or without 3.03 mM L-carnitine (LC) and 10 μM forskolin (FK). Treatment with LC began at the initiation of culture and treatment with FK began at Day 6. All other methods were as described for Experiment 1. Addition of LC did not affect development to the blastocyst stage but reduced (P < 0.05) development to the advanced blastocyst stage (21.0 ± 1.2 v. 17.1 ± 1.2%). Treatment with FK had no effect on embryo development to the blastocyst or advanced blastocyst stages. Blastocysts cultured in the presence of LC had increased (P < 0.05) re-expansion rates at 24, 48, and 72 h (60.2 ± 2.0 v. 78.0 ± 2.0%, 62.9 ± 1.2 v. 83.3 ± 1.2%, and 63.0 ± 2.4 v. 82.8 ± 2.4%, respectively) and hatching rates at 48 and 72 h (48.6 ± 4.3 v. 64.1 ± 4.3% and 59.6 ± 3.0 v. 78.5 ± 3.0%, respectively). There was no effect of FK on cryosurvival and no interaction between LC and FK affecting embryo development or cryosurvival. In conclusion, blastocyst yield was not improved by any of the lipid metabolic regulators tested. Cryosurvival was enhanced by addition of CLA and LC but FK reduced survival following freezing. There were no additive effects of either CLA and PES or LC and FK for blastocyst yield or cryosurvival.Support was provided by USDA AFRI Grant 2010-85122-20623.


1997 ◽  
Vol 9 (7) ◽  
pp. 697 ◽  
Author(s):  
Rupasri Ain ◽  
P. B. Seshagiri

The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.


2006 ◽  
Vol 18 (2) ◽  
pp. 119
Author(s):  
H. Bagis ◽  
S. Arat ◽  
H. Odaman ◽  
A. Tas

The objective of this study was to investigate the effects of two parameters on mouse embryo development in vitro. These parameters were the effect of oocyte age on activation and the effect of O2 concentration in culture. In the first experiment, oocytes were recovered from superovutated mice at 15 h (group 1) or 20 h (group 2) after human chorionic gonadotropin (HCG) injection. All oocytes were activated for 6 h with 10 mM Sr2+ in Ca2+ free medium in the presence of 5 �g/mL of cytochalasin B. After activation, embryos were cultured in KSOM.aa medium for 4.5-5.5 days. Zygotes from naturally bred mice were used as control. Differences in blastocyst formation rate and blastocyst cell number among treatments were analyzed by one-way ANOVA after arcsin square transformation. In the first experiment, blastocyst formation rate in the first group was higher than in the second group (62.6% vs. 47.1%; P < 0.05). In addition, blastocyst cell number was also higher in the first group than in the second one (69.4 � 3.2 vs. 52.4 � 2.2; P < 0.05). However, both values were higher in control group (80%, 76.2 � 1.2; P < 0.05) than in the experimental groups. These results showed that young oocytes were activated more effectively than aged oocytes. In the second experiment, mouse zygotes were cultured in a humidified atmosphere of 5% CO2 in air (group 3) or 5% CO2, 5% O2, and 90% N2 (group 4). Blastocyst formation rate and blastocyst cell number of zygotes cultured in low O2 concentration (group 4) for 4.5 days were higher than for group 3 (76.3% vs. 56.4 and 69.0 � 3.4 vs. 52.8 � 2.3; P < 0.05). There was a significant difference in blastocyt formation rate of embryos for 5.5 days between the two groups (25.8% for group 4 vs. 14.4% for group 3; P < 0.05). This suggests that the embryos developed more slowly in high O2 concentration. These results showed that low O2 concentration provided a more suitable environment for mouse embryo development in vitro. The same experiment was repeated with parthenogenetic embryos recently in our laboratory. This study was supported by a grant from TUBITAK, Turkey (VHAG-1022).


2008 ◽  
Vol 20 (1) ◽  
pp. 177
Author(s):  
P. Bermejo-Álvarez ◽  
A. Gutiérrez-Adán ◽  
P. Lonergan ◽  
D. Rizos

The faster-developing blastocysts in IVC systems are generally considered more viable and better able to survive following cryopreservation or embryo transfer than those that develop more slowly. However, evidence from several species indicates that embryos that reach the blastocyst stage earliest are more likely to be males than females. The aim of this study was to determine whether the duration of maturation could affect early embryo development and, furthermore, the sex ratio of early- or late-cleaved embryos and blastocysts. Cumulus–oocyte complexes were matured in vitro for 16 h (n = 2198) or 24 h (n = 2204). Following IVF, presumptive zygotes from each group were examined every 4 h between 24 and 48 h postinsemination (hpi) for cleavage, and all embryos were cultured to Day 8 in synthetic oviduct fluid to assess blastocyst development. Two-cell embryos at each time point and blastocysts on Days 6, 7, and 8 from both groups were snap-frozen individually for sexing. Sexing was performed with a single PCR using a specific primer BRY. There was a significantly lower number of cleaved embryos from the 16-h compared with the 24-h maturation group at 28 (10.0 � 1.51 v. 28.8 � 3.57%), 32 (35.3 � 1.48 v. 57.6 � 3.33%), 36 (54.8 � 1.76 v. 67.4 � 2.81%), 40 (63.3 � 1.82 v. 72.0 � 2.54%), and 48 (70.6 � 1.78 v. 77.1 � 2.18%) hpi, respectively (mean � SEM; P d 0.05). However, the blastocyst yields on Day 6 (17.1 � 3.11 v. 16.4 � 2.11%), 7 (30.6 � 4.10 v. 34.6 � 3.51%), or 8 (34.1 � 3.90 v. 39.4 � 4.26%) were similar for both groups (mean � SEM; 16 v. 24 h, respectively). Significantly more 2-cell early cleaved embryos (up to 32 hpi) were male compared with the expected 1:1 ratio from both groups (16 h: 1.24:0.76 v. 24 h: 1.17:0.83, P ≤ 0.05); however, the overall sex ratio among 2-cell embryos was significantly different from the expected 1:1 in favor of males only for the 16-h group (1.18:0.82, P ≤ 0.05). The sex ratio of blastocysts on Day 6, 7, or 8 from both groups was not different from the expected 1:1. However, the total number of male blastocysts obtained after 8 days of culture from the 24-h group was significantly different from the expected 1:1 (1.19:0.81, P ≤ 0.05) and approached significance in the 16-h group. These results show that the maturational stage of the oocyte at the time of fertilization has an effect on the kinetics of early cleavage divisions but not on blastocyst yield. Furthermore, irrespective of the duration of maturation, the sex ratio of early-cleaving 2-cell embryos was weighted in favor of males, and this observation was maintained at the blastocyst stage.


2004 ◽  
Vol 16 (2) ◽  
pp. 275
Author(s):  
D. Fischer ◽  
J. Bordignon ◽  
C. Robert ◽  
D. Betts

Environment is crucial for in vitro development of gametes and embryos. The recent progression of culture media towards defined conditions brought to surface the impact of different medium supplements on oocyte and embryo development. In this work we evaluate the effect of various oocyte culture media on bovine oocyte maturation and subsequent embryo development. Bovine cumulus-oocyte complexes were recovered from slaughterhouse ovaries and matured in vitro in either TCM-199 (Gibco) or SOF (Synthetic Oviduct Fluid) media supplemented with BSA (fatty acid-free) or serum (fetal bovine serum). Oocytes from each treatment group were denuded and fixed at 18, 20, 22, 24, 26 and 28h post-maturation (p.m.). Oocyte meiotic progression was monitored in each of the groups (n=28–40 oocytes/group) by immunofluorescence microscopy of chromatin. Oocytes matured in SOF showed a slower rate of meiotic progression when compared to the other groups, with the highest percentage of oocytes reaching the MII stage by 28h p.m. (60.71% SOF-BSA, 71.43% SOF-Serum). The fastest developmental rate was observed in oocytes matured in TCM-serum (77.15% at 24h p.m.) followed by oocytes matured in TCM-BSA (74.29% at 26h p.m.). In order to evaluate the effect of nuclear maturation on chromosome segregation, chromosomal organization of MII oocytes was evaluated by immunofluorescence microscopy within each media group (n=26–31 oocytes/group) at 18, 22 and 26h p.m.. No chromosomal abnormalities were found at 18h p.m.. Both media supplemented with BSA induced lower frequencies of chromosomal abnormalities (0 to 3.23%) and (3.57 to 7.69%) for SOF and TCM, respectively, when compared to their serum-supplemented counterparts (7.14 to 11.54%) and (10 to 10.71%) for SOF and TCM, respectively at 22 and 26h p.m.. Remarkably, the maturation medium and its supplements influenced the speed of blastocyst development. For this experiment, oocytes were matured in TCM-BSA, TCM-Serum, SOF-BSA or SOF-serum, fertilized in vitro in a TALP-base media supplemented with BSA and cultured in SOF-BSA. Blastocyst development was assessed at 7, 8 and 9 days of culture. Cleavage rates were similar between the groups (84–90%), whereas development rates to blastocyst stage varied among treatment groups. Maturation in SOF-BSA induced a delay in blastocyst formation that reached its highest percentage only on day 9 of culture (30.8%); moreover, blastocyst development was carried over until Day 12. When oocytes were matured in the presence of serum, the number of blastocysts did not increase after Day 8 of culture (26.6%, TCM-serum). These results provide evidence of a severe impact of oocyte culture media on the nuclear maturation of oocytes and their subsequent embryonic development after IVF. Moreover, the difference in the rate of oocyte maturation and blastocyst formation emphasizes the necessity for reviewing and adapting current protocols to new systems such as SOF-BSA. [Research funded by NSERC and OMAF of Canada.]


2010 ◽  
Vol 22 (1) ◽  
pp. 210 ◽  
Author(s):  
J. C. Mezzalira ◽  
L. U. Ohlweiler ◽  
M. Urio ◽  
S. G. Neto ◽  
L. R. Marinho ◽  
...  

Exposing bovine embryos and porcine oocytes to hydrostatic pressure has been shown to increase cryosurvival, possibly by a resulting expression of stress tolerance proteins. This study aimed to evaluate the effect of the negative pressure stress condition (a 5-min-long embryo exposure to a negative pressure) and the interval between vacuum exposure and vitrification (40 min or 2 h) on survival of bovine in vitro-produced (IVP) embryos. The negative pressure was achieved with the same apparatus used previously for the cryopreservation of embryos (Nitrocooler; Mezzalira et al. 2009 Reprod. Fert. Dev. (1) 134), in which a negative pressure (vacuum) is applied to liquid nitrogen to increase the cooling rate through the slush phenomenon, except that in this study, the vacuum was applied to the chamber without liquid nitrogen, at room temperature. Grades 1 and 2 bovine IVP expanded blastocysts were allocated to 1 of 5 experimental groups: embryos in vitro-cultured as fresh (control) or after vitrification (Vitri); and embryos subjected to the negative pressure for 5 min and then in vitro-cultured as fresh (NP-fresh) or after vitrification performed 40 min (NP-Vitri-40 min) or 2 h (NP-Vitri-2h) following the vacuum exposure. Embryos were vitrified in pulled glass micropipettes in a solution with 20% ethylene glycol + 20% dimethylsulfoxide + 20% fetal bovine serum and rewarmed in decreasing sucrose concentrations (Mezzalira et al. 1999 Acta Scientiae Veterinariae 27 262-262). In vitro culture was carried out in all treatments for 72 h for the assessment of re-expansion and hatching rates (Table 1), which were analyzed by the chi-square test, for P < 0.05. No differences in re-expansion rates were observed between groups. However, the vitrification of embryos after 2 h of exposure to a 5-min-long negative pressure (NP-Vitri-2h) improved embryo survival expressed by a higher hatching rate than for embryos vitrified without vacuum exposure (Vitri) or after 40 min following the 5-min-long exposure to vacuum. In addition, hatching rates in group NP-Vitri-2h were similar to those for fresh embryos (control and NP-fresh). Our results indicated that a short exposure of embryos to a negative pressure can improve cryotolerance following vitrification, which is dependent on the time interval between NP exposure and cryopreservation. Bovine IVP embryos should be allowed to recover for at least 2 h after NP exposure before the increase in cryotolerance is achieved. Table 1.Effect of negative pressure on re-expansion and hatching rates of fresh and vitrified


2017 ◽  
Vol 29 (4) ◽  
pp. 805 ◽  
Author(s):  
Luis B. Ferré ◽  
Yanina Bogliotti ◽  
James L. Chitwood ◽  
Cristóbal Fresno ◽  
Hugo H. Ortega ◽  
...  

The aim of the present study was to evaluate the effects of sperm motility enhancers and different IVF times on cleavage, polyspermy, blastocyst formation, embryo quality and hatching ability. In Experiment 1, sex-sorted X chromosome-bearing Bos taurus spermatozoa were incubated for 30 min before 18 h fertilisation with hyperactivating factors, namely 10 mM caffeine (CA), 5 mM theophylline (TH), 10 mM caffeine and 5 mM theophylline (CA + TH); and untreated spermatozoa (control). In Experiment 2, matured B. taurus oocytes were fertilised using a short (8 h) or standard (18 h) fertilisation length, comparing two different fertilisation media, namely synthetic oviducal fluid (SOF) fertilisation medium (SOF-FERT) and M199 fertilisation medium (M199-FERT). Cleavage and blastocyst formation rates were significantly higher in the CA + TH group (77% and 27%, respectively) compared with the control group (71% and 21%, respectively). Cleavage rates and blastocyst formation were significantly lower for the shortest fertilisation time (8 h) in M199-FERT medium (42% and 12%, respectively). The SOF-FERT medium with an 8 h fertilisation time resulted in the highest cleavage rates and blastocyst formation (74% and 29%, respectively). The SOF-FERT medium produced the highest embryo quality (50% Grade 1) and hatching rate (66%). Motility enhancers did not affect polyspermy rates, whereas polyspermy was affected when fertilisation length was extended from 8 h (3%) to 18 h (9%) and in M199-FERT (14%) compared with SOF-FERT (6%). We conclude that adding the motility enhancers CA and TH to sex sorted spermatozoa and Tyrode’s albumin lactate pyruvate (TALP)-Sperm can improve cleavage and embryo development rates without increasing polyspermy. In addition, shortening the oocyte–sperm coincubation time (8 h) resulted in similar overall embryo performance rates compared with the prolonged (18 h) interval.


Sign in / Sign up

Export Citation Format

Share Document