oviduct fluid
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 21 (4) ◽  
pp. 100545
Author(s):  
Charles Banliat ◽  
Valérie Labas ◽  
Daniel Tomas ◽  
Ana-Paula Teixeira-Gomes ◽  
Benoît Guyonnet ◽  
...  

2021 ◽  
Author(s):  
Weidong Zhou ◽  
Teng Zhang ◽  
Yikai Lian ◽  
Wenjing Zhang

Extracellular vesicles (EVs) are newly identified as cell-to-cell communication mediators that carry and transfer various regulatory molecules. Recent studies have shown that EVs play important roles in normal physiology and pathological conditions of human reproduction. In the female reproductive system, EVs in follicular fluid, oviduct fluid, and uterine luminal fluid are considered as vehicles to regulate follicular development, oocyte maturation and mediate embryo–maternal crosstalk to affect embryo implantation and pregnancy. In the male reproductive system, prostasomes and epididymosomes are involved in regulating sperm maturation, motility, capacitation, acrosome reaction, and fertilization. EVs transmitted cargos also play important roles in reproduction-related pathologies, such as polycystic ovarian syndrome, endometriosis, pregnancy complications, male infertility, and gynecological malignant tumors. In view of the important roles in the reproductive system, EVs may be used as biomarkers or therapeutic targets for reproductive abnormalities and related diseases. In this chapter, we sorted EVs in human reproduction through their physical/pathological functions and mechanisms, and listed several EVs as biomarkers and clinical therapeutic applications in the future.


2021 ◽  
Author(s):  
Coline Mahé ◽  
Régis Lavigne ◽  
Emmanuelle Com ◽  
Charles Pineau ◽  
Yann Locatelli ◽  
...  

Abstract Unraveling the oviduct fluid (OF) and its regulation is crucial to understand the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n=32 OF pools for all region ´ stage ´ side conditions). A total of 3,760 proteins were identified in the OF, of which 37% were predicted to be secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.


2021 ◽  
Vol 21 (3) ◽  
pp. 100512
Author(s):  
Coline Mahé ◽  
Julie Gatien ◽  
Olivier Desnoes ◽  
Daniel Le Bourhis ◽  
Pascal Mermillod ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 484
Author(s):  
Isabel Gimeno ◽  
Pablo García‐Manrique ◽  
Susana Carrocera ◽  
Cristina López‐Hidalgo ◽  
Luis Valledor ◽  
...  

In vitro produced (IVP) embryos show large metabolic variability induced by breed, culture conditions, embryonic stage and sex and gamete donors. We hypothesized that the birth potential could be accurately predicted by UHPLC-MS/MS in culture medium (CM) with the discrimination of factors inducing metabolic variation. Day-6 embryos were developed in single CM (modified synthetic oviduct fluid) for 24 h and transferred to recipients as fresh (28 ETs) or frozen/thawed (58 ETs) Day-7 blastocysts. Variability was induced with seven bulls, slaughterhouse oocyte donors, culture conditions (serum + Bovine Serum Albumin [BSA] or BSA alone) prior to single culture embryonic stage records (Day-6: morula, early blastocyst, blastocyst; Day-7: expanding blastocyst; fully expanded blastocysts) and cryopreservation. Retained metabolite signals (6111) were analyzed as a function of pregnancy at Day-40, Day-62 and birth in a combinatorial block study with all fixed factors. We identified 34 accumulated metabolites through 511 blocks, 198 for birth, 166 for Day-62 and 147 for Day-40. The relative abundance of metabolites was higher within blocks from non-pregnant (460) than from pregnant (51) embryos. Taxonomy classified lipids (12 fatty acids and derivatives; 224 blocks), amino acids (12) and derivatives (3) (186 blocks), benzenoids (4; 58 blocks), tri-carboxylic acids (2; 41 blocks) and 5-Hydroxy-l-tryptophan (2 blocks). Some metabolites were effective as single biomarkers in 95 blocks (Receiver Operating Characteristic – Area Under the Curve [ROC-AUC]: 0.700–1.000). In contrast, more accurate predictions within the largest data sets were obtained with combinations of 2, 3 and 4 single metabolites in 206 blocks (ROC-AUC = 0.800–1.000). Pregnancy-prone embryos consumed more amino acids and citric acid, and depleted less lipids and cis-aconitic acid. Big metabolic differences between embryos support efficient pregnancy and birth prediction when analyzed in discriminant conditions.


Author(s):  
G.M. Bragança ◽  
A.S. Alcantara-Neto ◽  
R.I.T.P. Batista ◽  
F.Z. Brandão ◽  
V.J.F. Freitas ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5326 ◽  
Author(s):  
Charles Banliat ◽  
Daniel Le Bourhis ◽  
Ophélie Bernardi ◽  
Daniel Tomas ◽  
Valérie Labas ◽  
...  

Oviduct fluid extracellular vesicles (oEVs) have been proposed as bringing key molecules to the early developing embryo. In order to evaluate the changes induced by oEVs on embryo phospholipids, fresh bovine blastocysts developed in vitro in the presence or absence of oEVs were analyzed by intact cell MALDI-TOF (Matrix assisted laser desorption ionization—Time of flight) mass spectrometry (ICM-MS). The development rates, cryotolerance, and total cell number of blastocysts were also evaluated. The exposure to oEVs did not affect blastocyst yield or cryotolerance but modified the phospholipid content of blastocysts with specific changes before and after blastocoel expansion. The annotation of differential peaks due to oEV exposure evidenced a shift of embryo phospholipids toward more abundant phosphatidylcholines (PC), phosphatidylethanolamines (PE), and sphingomyelins (SM) with long-chain fatty acids. The lipidomic profiling of oEVs showed that 100% and 33% of the overabundant masses in blastocysts and expanded blastocysts, respectively, were also present in oEVs. In conclusion, this study provides the first analysis of the embryo lipidome regulated by oEVs. Exposure to oEVs induced significant changes in the phospholipid composition of resulting embryos, probably mediated by the incorporation of oEV-phospholipids into embryo membranes and by the modulation of the embryonic lipid metabolism by oEV molecular cargos.


Small ◽  
2020 ◽  
Vol 16 (24) ◽  
pp. 2000213 ◽  
Author(s):  
Friedrich Striggow ◽  
Mariana Medina‐Sánchez ◽  
Günter K. Auernhammer ◽  
Veronika Magdanz ◽  
Benjamin M. Friedrich ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1681 ◽  
Author(s):  
Beatriz Rodríguez-Alonso ◽  
Veronica Maillo ◽  
Omar Salvador Acuña ◽  
Rebeca López-Úbeda ◽  
Alejandro Torrecillas ◽  
...  

Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3–10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.


Reproduction ◽  
2020 ◽  
Vol 159 (1) ◽  
pp. 41 ◽  
Author(s):  
Hirofumi Nishizono ◽  
Mohamed Darwish ◽  
Takaho A Endo ◽  
Kyosuke Uno ◽  
Hiroyuki Abe ◽  
...  

Oviduct fluid is essential for the fertilization and subsequent preimplantation development. Glycine is abundant in oviduct fluid and is reported to be critical for preimplantation development of fertilized eggs in mammals. However, the mechanism by which glycine exerts its action on fertilized eggs is yet to be understood. Here we show that glycine regulates the preimplantation development of mouse fertilized eggs via glycine receptors. Among them, the alpha-4 subunit (Glra4) and the β subunit are expressed in mouse fertilized eggs, and lacking Glra4 inhibits embryonic development to the blastocyst stage, decreases the number of cells in the blastocysts and the litter size. Thus, we identify a novel function of the glycine receptor, which is considered to act mainly as a neurotransmitter receptor, as a regulator of embryonic development and our data provide new insights into the interactions between oviduct milieu and mammalian fertilized egg.


Sign in / Sign up

Export Citation Format

Share Document