267 EFFECT OF FOLLICULAR FLUID CONCENTRATION ON IN VITRO DEVELOPMENT OF PORCINE OOCYTES AND THE EXPRESSION OF GENES RELATED TO CUMULUS EXPANSION AND EMBRYO QUALITY

2013 ◽  
Vol 25 (1) ◽  
pp. 281
Author(s):  
J. E. Park ◽  
H. J. Oh ◽  
M. J. Kim ◽  
G. A. Kim ◽  
E. J. Park ◽  
...  

It is well known that the presence of porcine follicular fluid (PFF) in in vitro maturation media enhances the developmental competence of porcine oocytes. However, it is also suggested that the action of PFF can be modulated positively or negatively by its components. In this study, we investigated the effects of PFF concentration (10 v. 1%) and protein-free media (PFF 0%) on the maturation of porcine oocytes in vitro, and analysed the difference in gene expression in the resulting cumulus cells and blastocysts after parthenogenetic activation. Three groups were tested: 1) 10% PFF: TCM-199 + 10% PFF (n = 638); 2) 1% PFF: TCM-199 + 3.05 mM d-glucose + 1% PFF (n = 418); and 3) 0.1% polyvinyl alcohol: TCM-199 + 3.05 mM d-glucose + 0.1% polyvinyl alcohol (n = 693). Cumulus–oocyte complexes were cultured for 20 to 22 h in the respective media that contained gonadotrophin (1 µg mL–1), epidermal growth factor (10 ng mL–1), cysteine (0.57 mM), sodium pyruvate (0.91 mM), insulin (5 µg mL–1), and 9-cis retinoic acid (5 nM). They were then cultured for an additional 20 to 22 h without hormonal supplements. Data was analysed by one-way ANOVA using the SAS program (SAS Institute Inc., Cary, NC, USA). No significant difference in oocyte maturation rate was observed. However, significantly higher (P < 0.05) proportions of embryos developed in the blastocyst stage when the oocytes were matured in 10% PFF group (45%) than in the 1% PFF group (31.1%). The total cell numbers were not significantly different among groups (52 ± 1.3 v. 54.6 ± 3.1 v. 54.4 ± 2.5, respectively). In addition, the expression of matrix molecule (HAS2, GREM1), steroidogenesis (HSD3B), epidermal growth factor signalling (AREG, BTC), and cell cycle regulator (CCND2) genes were upregulated in the cumulus that was obtained from oocytes that matured in 10% PFF. The expression of the anti-apoptotic gene (BclxL) was upregulated, and the expression of the pro-apoptotic gene (Bax) and metabolism-related genes (GLUT1, LDHA) were downregulated in blastocysts that developed from the 10% PFF group. Therefore, it can be concluded that supplementation of 10% PFF during in vitro maturation improves embryo development by increasing matrix molecules and maturation-enabling factors in the cumulus and by reducing apoptosis. This study was supported by IPET (No. 311011-05-1-SB010), MKE (No. 10033839-2012-21), the Research Institute for Veterinary Science, the BK21 Program, and the TS Corporation.

2008 ◽  
Vol 20 (1) ◽  
pp. 182 ◽  
Author(s):  
Y. Locatelli ◽  
N. Poulin ◽  
G. Baril ◽  
J.-L. Touzé ◽  
A. Fatet ◽  
...  

The aim of the present study was to assess the effect of IVM treatment on the developmental competence of oocytes recovered from repeated laparoscopic ovum pickukp (LOPU) in goats. A total of 94 LOPU sessions were performed on 33 adult goats of the Saanen and Alpine breeds. Females were synchronized (Day 0) during the nonbreeding season by inserting vaginal sponges (45 mg of fluorogestone acetate, Intervet, Boxmeer, The Netherlands). At Day 8, an i.m. injection of 50 μg of cloprostenol (Estrumate; Schering-Plough Animal Health, Pointe-Claire, Quebec, Canada) was administered. Porcine FSH (Stimufol, Merial, Brussels, Belgium, 160 mg/goat) was administered in 5 injections at 12-h intervals, starting on Day 8. The LOPU took place under general anesthesia on Day 11, and follicles ≥2 mm were aspirated with an 18-gauge needle connected to a controlled vacuum system. Vaginal sponges were removed at the time of LOPU. Treatments were repeated 2 times in a 2-week interval scheme (2 goats and 1 goat were excluded from the experiment during the second and third LOPU sessions, respectively). Cumulus–oocyte complexes were washed and evaluated for quality (graded from 1 to 3). Oocytes recovered from unstimulated slaughterhouse-derived ovaries served as a control. Cumulus–oocytes complexes from Grades 1 and 2 were submitted to IVM in TCM-199, supplemented with 100 μm of cysteamine and either 10 ng mL–1 of epidermal growth factor (EGF) or 10% follicular fluid and 100 ng mL–1 of ovine FSH (FF-FSH). Matured oocytes were then submitted to IVF and in vitro development as described by Cognié et al. (2004 Reprod. Fertil. Dev. 16, 437–445). Over the 94 LOPU sessions, 20.4 ± 0.9 follicles were aspirated (mean ± SEM), allowing the recovery of 12.3 ± 0.7 COC per goat and per session, of which 80.1% were suitable for IVM (Grades 1 and 2). Results of in vitro production are detailed in the table. The IVM treatment did not significantly affect cleavage or blastocyst development rates in oocytes derived from slaughterhouse ovaries. Cleavage rates were significantly decreased in LOPU-derived oocytes when compared with control oocytes. For LOPU-derived oocytes, cleavage and final blastocyst development rates were increased significantly and kinetics of embryo development were accelerated when FF-FSH was used during IVM as compared with EGF. The IVM with FF-FSH allowed us to produce 4.1 blatocysts per goat per LOPU session. These results demonstrate the interest in LOPU for goat embryo production once appropriate IVM treatment is used. The difference observed between LOPU and slaughterhouse oocytes in terms of response to IVM treatments may be related to FSH stimulation prior to the LOPU session or to postmortem changes in oocyte responsiveness in the slaughterhouse group. Table 1. Effects of oocyte origin [laparoscopic ovum pickukp (LOPU) or slaughterhouse derived] and maturation treatment [epidermal growth factor (EGF) or follicular fluid (FF)-FSH] on in vitro embryo production (6 replicates)


2011 ◽  
Vol 23 (1) ◽  
pp. 222
Author(s):  
E. S. Caixeta ◽  
M. F. Machado ◽  
P. Ripamonte ◽  
P. F. Lima ◽  
A. C. S. Castilho ◽  
...  

Epidermal growth factor (EGF)-like family members [amphiregulin (AREG), epiregulin (EREG), and betacellulin (BTC)] have been shown to be important regulators of cumulus–oocyte complex (COC) maturation, particularly cumulus expansion. The aim of this study was to determine the temporal expression patterns of mRNA encoding EGF-like growth factors in bovine cumulus cells (CC) during COC in vitro maturation and to assess the effects of grading doses of FSH on EGF-like mRNA expression in CC. Immature COC (grades 1 and 2) were obtained from 2- to 8-mm follicles from abattoir ovaries. In the first experiment, CC were separated from 20 COC and frozen before (immature group) or after COC culture for 4, 8, 12, 16, and 20 h with (10 ng mL–1) or without FSH. In the second experiment, pools containing 20 COC were matured for 12 h with grading doses of FSH (0, 0.1, 1, 10, and 100 ng mL–1). After culture, CC were mechanically separated and stored at –80°C. Total RNA was extracted using RNeasy® (Qiagen, Valencia, CA, USA), and 100 ng of RNA was reverse transcribed. Expression of target genes was assessed by real-time PCR and normalized by Cyclophilin (CYC-A). Relative quantification of mRNA abundance was determined by the Pfaffl equation. Effects of time of culture and FSH treatment were tested by ANOVA, and groups were compared by Tukey-Kramer honestly significant difference test. Nonparametric analysis was used when data were not normally distributed. Differences were considered significant when P < 0.05. In the presence of FSH, AREG and EREG mRNA abundance was increased at 4 h of culture, whereas in the absence of FSH, AREG but not EREG mRNA levels were increased by 4 h of culture. The addition of FSH stimulated AREG mRNA expression from 4 to 16 h of culture. In contrast, BTC mRNA was more expressed in immature CC, decreased after 4 h of culture with FSH, and did not vary during maturation in the absence of FSH. In the dose–response experiment, AREG and EREG mRNA expression was stimulated by FSH starting from 10 ng mL–1 and did not increase from 10 ng mL–1 to 100 ng mL–1. Again in contrast, BTC mRNA expression was inhibited by FSH at 100 ng mL–1. In conclusion, the present data suggest that FSH differently regulates the expression of EGF-like factors during bovine COC maturation, although AREG and EREG are stimulated, BTC is inhibited by FSH. This work was supported by FAPESP.


2017 ◽  
Vol 29 (1) ◽  
pp. 180
Author(s):  
T. Yamanouchi ◽  
S. Sugimura ◽  
H. Matsuda ◽  
M. Ohtake ◽  
Y. Goto ◽  
...  

Bovine oocytes obtained by ovum-pick-up (OPU) following follicle growth treatment (FGT) have improved quality and competence (Imai et al. 2008 Reprod. Fertil. Dev. 20, 182). However, the effect of the presence of FSH or epidermal growth factor (EGF) like peptide during in vitro maturation (IVM) on the developmental competence of FGT oocytes has not been well known. This study was undertaken to examine the developmental competence of FGT oocytes following IVM in the presence of FSH (recombinant human FSH) or EGF-like peptide (amphiregulin; Areg) and IVF. Japanese Black cows (n = 17) were used as donors. Five days after arbitrary OPU (opu group), follicles ≥8 mm in diameter were aspirated again, a controlled internal drug release (CIDR) was inserted into the vagina, and then pFSH was injected twice a day from the evening of Day 6 to the morning of Day 10 with decreasing doses (total of 20 AU; 4, 4, 3, 3, 2, 2, 1, 1 AU/day). On the evening of Day 8, PGF2α (0.5 mg of cloprostenol) was administered. On Day 11, oocytes were aspirated from follicles with ≥5 mm in diameter of the treated donors by OPU (fgt group). The cumulus-oocyte complexes (COC) were cultured in the absence (opu-cont and fgt-cont groups) or presence of 0.1 IU mL−1 FSH (opu-fsh and fgt-fsh groups) or 100 ng mL−1 Areg (opu-areg and fgt-areg groups) in IVM medium (mTCM199 containing 5 mg mL−1 BSA) for 20 to 22 h (1 COC/5 µL, total of 162–171 COC per group), and then co-cultured with 3 × 106 sperm/mL for 6 h. The presumptive zygotes were continued to culture in mCR1aa supplemented with 5% newborn calf serum for 216 h (1 zygote/5 µL) using micro-well culture dishes (Dai-Nippon-Print). When repeating this opu-fgt session in the same cow, an interval at least for 50 days was kept, and the session was performed 28 times. Statistical analysis was carried out by Mann-Whitney’s U-test (between opu and fgt groups) or Steel-Dwass test after Kruskal-Wallis test (among all groups). The number of follicles ≥5 mm increased in the fgt than opu group (17.8 v. 2.9; P < 0.01). The number of COC collected was not different between the opu and fgt groups (23.1 v. 19.6; P > 0.05). The blastocyst formation rate was higher in the fgt than opu group (36.9 v. 23.1%; P < 0.01). Within 6 groups, the blastocyst formation rate was higher in the fgt-fsh (43.3%; P < 0.01) and fgt-areg (39.5%; P < 0.05) groups than the opu-cont (16.3%) group. The rate in the fgt-fsh group was also higher than that in the opu-fsh group (43.3 v. 18.7%; P < 0.01). These results suggested that FGT improved the developmental competence of bovine oocytes, probably through improving the ability of the COC to react against FSH/Areg.


Reproduction ◽  
2011 ◽  
Vol 141 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Radek Procházka ◽  
Michal Petlach ◽  
Eva Nagyová ◽  
Lucie Němcová

The aim of this work was to assess the FSH-stimulated expression of epidermal growth factor (EGF)-like peptides in cultured cumulus–oocyte complexes (COCs) and to find out the effect of the peptides on cumulus expansion, oocyte maturation, and acquisition of developmental competencein vitro. FSH promptly stimulated expression of amphiregulin (AREG) and epiregulin (EREG), but not betacellulin (BTC) in the cultured COCs. Expression ofAREGandEREGreached maximum at 2 or 4 h after FSH addition respectively. FSH also significantly stimulated expression of expansion-related genes (PTGS2,TNFAIP6, andHAS2) in the COCs at 4 and 8 h of culture, with a significant decrease at 20 h of culture. Both AREG and EREG also increased expression of the expansion-related genes; however, the relative abundance of mRNA for each gene was much lower than in the FSH-stimulated COCs. In contrast to FSH, AREG and EREG neither stimulated expression ofCYP11A1in the COCs nor an increase in progesterone production by cumulus cells. AREG and EREG stimulated maturation of oocytes and expansion of cumulus cells, although the percentage of oocytes that had reached metaphase II was significantly lower when compared to FSH-induced maturation. Nevertheless, significantly more oocytes stimulated with AREG and/or EREG developed to blastocyst stage after parthenogenetic activation when compared to oocytes stimulated with FSH alone or combinations of FSH/LH or pregnant mares serum gonadotrophin/human chorionic gonadotrophin. We conclude that EGF-like peptides do not mimic all effects of FSH on the cultured COCs; nevertheless, they yield oocytes with superior developmental competence.


2007 ◽  
Vol 19 (1) ◽  
pp. 157
Author(s):  
H. B. Seok ◽  
J. H. Quan ◽  
S. K. Kim

The purpose of this study was to investigate in vitro maturation rate of oocytes cultured in maturation medium supplemented with epidermal growth factor (EGF), β-mercaptoethanol (ME), and glucose, and the further development of NT embryos under various conditions. The basic media used for oocyte maturation were NCSU-23 and PZM-3 supplemented with 0.1 mg mL-1 cysteine, 10% (v/v) porcine follicular fluid (pFF), 10 �g mL-1 FSH, 10 �g mL-1 LH, 20 ng mL-1 EGF, and 25 �M ME. Porcine ovaries were collected at a local slaughterhouse, and donor cells from a 35-day-old fetus were dissociated, resuspended, and cultured for 6–8 days in DMEM supplemented with 10% (v/v) FBS, penicillin G (75 �g mL-1), streptomycin (50 �g mL-1), 1 mM sodium pyruvate, and 1% (v/v) nonessential amino acids. The first polar body and adjacent cytoplasm were enucleated by a micropipette in HEPES-buffered NCSU-23 supplemented with 4 mg mL-1 BSA and 7.5 �g mL-1 cytochalasin B. Couplets were equilibrated with 0.3 M mannitol solution and transferred to a chamber containing 2 electrodes with a pulse of 2.1 kV cm-1 for 30 �s. When the embryos were cultured in NCSU-23 or PZM-3 supplemented with or without 20 ng mL-1 EGF for 144 h, the development rates to the blastocyst stage were 12.0 � 1.3%, 9.6 � 1.9%, 10.9 � 2.1%, and 9.1 � 2.3%, respectively. When the embryos were cultured in NCSU-23 or PZM-3 supplemented with or without 25 �M ME for 144 h, the rates to blastocyst stage were 9.6 � 1.7%, 7.3 � 2.3%, 11.9 � 1.8%, and 7.4 � 2.1%, respectively. The developmental rate to the blastocyst stage of NT embryos cultured in PZM-3 supplemented with ME was significantly higher than when cultured without ME supplementation (P &lt; 0.05). When the embryos were cultured in NCSU-23 or PZM-3 supplemented with or without 1.5 mM glucose for 144 h, the rates to blastocyst stage were 9.4 � 2.2%, 6.8 � 2.7%, 10.9 � 2.4%, and 8.9 � 2.6%, respectively. The developmental rate to the blastocyst stage of NT embryos cultured in NCSU-23 and PZM-3 supplemented with glucose was higher than when cultured without glucose supplementation. When NT embryos were cultured in NUSU-23 and PZM-3 at 5% and 20% O2 concentration, the rates were 11.1 � 1.8%, 9.8 � 1.4%, 12.5 � 1.6%, and 10.9 � 1.5%, respectively. The developmental rate to the blastocyst stage of NT embryos cultured in both NCSU-23 and PZM-3 at 5% O2 concentration was higher than when cultured at 20% O2 concentration. When fetal fibroblasts were cultured in NCSU-23 and PZM-3, the fusion rate of less than 10 passages was higher than for those of 11–15 passages. In conclusion, the present study indicates that EGF and glucose have beneficial effects on the in vitro maturation of oocytes, and ME improves the developmental ability of NT embryos. Furthermore, the developmental rate in subcultured fibroblast cells was improved when reconstruction was made with less than 10 passages.


Sign in / Sign up

Export Citation Format

Share Document