168 INHIBITION OF BOVINE OOCYTE CUMULUS CELL PROGESTERONE SYNTHESIS DURING IN VITRO MATURATION AFFECTS CHROMOSOME ALIGNMENT AND SPINDLE INTEGRITY IN FERTILIZED EGGS AND EARLY EMBRYOS

2014 ◽  
Vol 26 (1) ◽  
pp. 198
Author(s):  
E. Daly ◽  
A. G. Fahey ◽  
M. M. Herlihy ◽  
T. Fair

We have previously demonstrated the importance of progesterone (P4) synthesis by cumulus cells during oocyte maturation in vitro (IVM) for bovine oocyte acquisition of developmental competence and subsequent embryo development (Aparicio et al. 2011 Biol. Reprod. 84). The aim of this study was to identify key processes that may be deregulated by the inhibition of P4 signalling in the cumulus–oocyte complex (COC) during IVM. To this end, good quality immature COC were placed in IVM medium [TCM-199 supplemented with 10% (vol/vol) FCS and 10 ng mL–1 epidermal growth factor] and cultured at 39°C for 22 h in a humidified atmosphere containing 5% CO2, in the presence or absence of 10 μM trilostane (which blocks P4 synthesis by inhibiting 3 β-hydroxysteroid dehydrogenase; Stegram Pharmaceuticals Ltd., Surrey, UK). Matured COC were washed and placed in 250 μL of fertilization medium (25 mM bicarbonate, 22 mM Na-lactate, 1 mM Na-pyruvate, 6 mg mL–1 fatty acid-free BSA, and 10 mg mL–1 heparin). In vitro fertilization (IVF) was performed with 250 μL of frozen–thawed semen at a final concentration of 1 × 106 spermatozoa mL–1 at 39°C under 5% CO2 during 20 h. Presumptive zygotes were denuded, washed, and transferred to 25-μL culture droplets (SOF + 5% FCS) at 39°C under 5% CO2, 90% of N2, and 5% O2 atmosphere with maximum humidity. Subsets of presumptive fertilized eggs and developing embryos were recovered at 6, 72, 120, and 192 h postinsemination (hpi) and processed for confocal whole-mount immunocytochemistry. The meiotic and mitotic spindles and chromosomes were visualised by immunofluorescent labelling of α-tubulin and 4′,6-diamindino-2-phenylindole (DAPI), respectively, and classified as normal if the chromosomes were correctly aligned or appropriately segregated, or abnormal if lagging chromosomes or abnormal chromosome segregation were observed. Samples were collected from 5 replicates (n = 50 zygotes/embryos per treatment, per timepoint) and a total of 157 spindles were observed. Logistic regression analysis was conducted to determine the probability of abnormal spindle formation. The incidence of spindle abnormality was regressed on time, treatment, and treatment by time. For all time points, there was significant reduction in the odds of abnormal spindle formation in control samples versus trilostane-treated samples (P < 0.001). In conclusion, our data imply a role for P4 signalling in maintaining spindle integrity during oocyte meiotic maturation and progression through the initial mitotic divisions of early embryo development in cattle.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p &gt; 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


2016 ◽  
Vol 28 (2) ◽  
pp. 210
Author(s):  
P. Hugon ◽  
J. Lamy ◽  
E. Corbin ◽  
P. Mermillod ◽  
M. Saint-Dizier

This study was designed to evaluate the effects of oviductal fluid at different periovulatory times on oocyte maturation, modification of the zona pellucida (ZP), fertilization and embryo development. Bovine oviducts were collected at a slaughterhouse and classified as preovulatory (pre-ov: 1 pre-ov follicle and a regressing corpus luteum) or post-ovulatory (post-ov: a corpus haemorrhagicum or recent corpus luteum; n = 10 cows/stage). Both oviducts were flushed with 1 mL of sterile TCM-199, and oviductal flushes (OF) were aliquoted and stored at –80°C. Abattoir-derived bovine ovaries were aspirated and cumulus‐oocyte complexes (COC) with at least 3 cumulus layers and homogeneous oocyte cytoplasm were in vitro matured for 22 h in standard maturation medium (control group, n = 319) or in standard medium with 2× concentrated additives supplemented (50% v/v) with pre-ov OF (n = 255) or post-ov OF (n = 248). After in vitro maturation (IVM), subgroups of COC were denuded, and the time of digestion of the ZP by pronase 0.1% (v/v in TCM-199) was determined to evaluate ZP hardening. After IVM, COC were fertilised in vitro for 18–20 h at a final concentration of 1.106 million spermatozoa (spz)/mL. After in vitro fertilization (IVF), COC were denuded, washed twice and cultured for 8 days more under standard conditions. After IVM, IVF, and embryo culture, oocytes/embryos were fixed with ethanol, stained with Hoescht, and examined under fluorescence microscopy for determination of (1) maturation and developmental stages, (2) numbers of fertilised and polyspermic oocytes, and (3) spz bound to the ZP. Percentages were compared between groups by chi-square. Times of ZP digestion were compared by Kruskal‐Wallis test. Numbers of spz bound to the ZP were compared by ANOVA on normalised data followed by Newman-Keuls tests. Data are presented as mean ± SEM. A P < 0.05 was considered significant. Addition of OF during IVM had no effect on maturation rates compared with the control. However, the digestion time of the ZP by pronase was reduced after IVM with pre-ov OF (313 ± 21 s; n = 26) compared with post-ov OF (459 ± 23 s; n = 23) but not with the control (416 ± 30 s; n = 25). After IVF, the number of spermatozoa bound to the ZP was increased after IVM with pre-ov OF (57 ± 5 spz/oocyte; n = 67) and decreased after IVM with post-ov OF (34 ± 3 spz/oocyte; n = 76) compared with the control (42 ± 5 spz/oocyte; n = 60). Addition of OF during IVM had no effect on rates of IVF and polyspermia. However, the rate of development to the blastocyst stage was less after IVM with post-ov OF (10%, n = 97 cleaved oocytes) compared with control (24%, n = 130) and pre-ov OF (29%, n = 101). In conclusion, the OF collected before ovulation decreased the resistance of the ZP to protease digestion and increased its ability to bind spz, whereas it was the opposite for the post-ov OF. Furthermore, the post-ov OF decreased the developmental competence of fertilised oocytes.


2018 ◽  
Vol 30 (1) ◽  
pp. 219
Author(s):  
C. De Canditiis ◽  
N. Pagano ◽  
V. Franco ◽  
I. Paradiso ◽  
É. C. Dos Santos ◽  
...  

There is a growing worldwide concern regarding the increased release of the heavy metal cadmium (Cd) in the environment, due to several industrial processes, as it is known to affect health. Among other heavy metals, Cd is widely recognised to influence the reproductive system at different levels, interfering with both gametes and embryo functions in several species (Thompson and Bannigan, 2008 Reprod. Toxicol. 25, 304-315). The in vitro model can be used to mimic environmental conditions allowing us to evaluate their effect on oocyte maturation and early embryo development. Therefore, the aim of this study was to evaluate the influence of different Cd concentrations on nuclear maturation, apoptosis in cumulus cells, and cleavage and blastocyst yields in cattle. For this purpose, abattoir-derived bovine oocytes were in vitro matured, fertilized, and cultured according to standard procedures (Rubessa et al. 2011 Theriogenology 76, 1347-1355). In particular, oocytes were matured with 0 (control; n = 126), 0.1 μM (n = 139), 1 μM (n = 134), and 10 μM of Cd (n = 135), at 39°C under humidified air with 5% CO2, 7% O2, and 88% N2. For each replicate, after 22 h of maturation, a representative sample of oocytes (n = 10 per each group) was used to evaluate nuclear maturation by 4′,6-diamidino-2-phenylindole (DAPI) staining and another sample (n = 10 per each group) to assess cumulus-cells complex apoptosis by TUNEL/Hoechst staining (Pocar et al. 2005 Reproduction 130, 857-868). The remaining oocytes were in vitro fertilized and cultured with 0 (n = 106), 0.1 μM (n = 119), 1 μM (n = 114), and 10 μM (n = 115) Cd. The experiment was repeated 3 times. On Day 8 post-IVF, the blastocyst yields were recorded. Differences among groups were analysed by ANOVA, with the least significant difference method used as a post hoc test. Data are presented as means ± SE. Unexpectedly, the exposure of oocytes to Cd during IVM did not affect the percentage of oocytes undergoing nuclear maturation (on average 96.3 ± 2.3). In contrast, concentrations of 1 and 10 μM Cd increased the percentage of apoptotic cumulus-cells in cumulus–oocyte complexes (COC) compared with the control (3.4 ± 0.4, 10.6 ± 1.8, 15.0 ± 0.9, 16.7 ± 4.0, respectively, with 0, 0.1, 1, and 10 μM; P < 0.05). It is worth pointing out that with the highest concentration, cumulus expansion did not occur and cumulus cells appeared detached from the oocyte. Likewise, 1 and 10 μM Cd decreased cleavage rates compared with the control (68.7 ± 1.8, 54.3 ± 5.0, 58.5 ± 4.2 and 2.8 ± 2.6, respectively, with 0, 0.1, 1, and 10 μM Cd; P < 0.01). Finally, blastocyst yields decreased when oocytes were treated with 0.1 μM Cd and no development to blastocyst was observed at the 2 higher concentrations (35.1 ± 1.7, 26.2 ± 3.1, 0, 0, respectively, with 0, 0.1, 1, and 10 μM; P < 0.01). In conclusion, exposure to Cd during maturation negatively affects bovine COC, as indicated by the increased apoptotic index in cumulus cells, without influencing the nuclear maturation process. Furthermore, the presence of Cd during in vitro fertilization and culture severely impairs both the fertilization and post-fertilization embryo development.


Author(s):  
Orhan Örnek ◽  
Yusuf Ziya Güzey

Progesterone plays a key role in the establishment and maintenance of pregnancy in mammalian. Increasing levels of circulating progesterone in the post-conception period are associated with conceptus elongation and high pregnancy rates in cattle. Contradictory results are available on the direct role of progesterone in early embryo development. The objective of this study was to evaluate direct effects of progesterone on in vitro development of cattle embryos. Immature oocytes collected from slaughtered animals and cultured in the presence of different concentrations of progesterone (25, 50, 100 ng/mL) following in vitro fertilization. Cleavage rates in 25 and 50 ng/mL concentrations of progesterone were significantly higher than those in controls and 100 ng/mL. Rate of embryos that reached to the morula stage was similar in all groups. Supplementation of 25 and 50 ng/mL progesterone to the culture media significantly increased blastocyst yield while 100 ng/mL progesterone resulted in a decrease. As a conclusion, we can suggest that progesterone supplementation in in vitro culture may support embryo development at low levels.


2014 ◽  
Vol 26 (1) ◽  
pp. 197
Author(s):  
K. Saeki ◽  
D. Iwamoto ◽  
S. Taniguchi ◽  
M. Kishi ◽  
N. Kato

During bovine oocyte maturation, a lower density of cumulus cells surrounding oocytes reduces the developmental competence of the oocytes after IVF. Adding more cumulus cells (Hashimoto et al. 1998) rescues the developmental competence of the corona-enclosed oocytes. In this study, we examined the effects of poly(dimethylsiloxane) (PDMS) microwells (MW) for bovine oocyte maturation on the developmental competence of the oocytes following IVF. In experiment 1, MW were produced by making holes on 0.5-mm-thick PDMS plates using a 0.5-mm-diameter biopsy punch. The punched plates were placed on the bottoms of culture dishes. Bovine cumulus oocytes complexes (COC) were collected from slaughterhouse ovaries. Cumulus layers were removed from COC to prepare corona-enclosed oocytes (CEO) and denuded oocytes (DO). Then, COC, CEO, or DO were individually matured in single MW for 24 h at 39°C under 5% CO2 in air with high humidity. Ten oocytes of each group were matured in 50-μL droplets of maturation medium (group culture, GC) as controls. Maturation medium was TCM-199 supplemented with 10% FCS, 0.02 AU mL–1 FSH, and 1 μg mL–1 E2. The matured oocytes were fertilized with frozen–thawed spermatozoa. The embryos were cultured in CR1aa medium for 168 h under 5% CO2, 5% O2 and 90% N2 with high humidity. In experiment 2, effects of depth of MW for maturation on subsequent development following IVF were examined. Microwells were produced by making 0.5-mm-diameter holes on 0.5- or 1.5-mm-thick PDMS plates. Then, COC or CEO were individually matured in the MW for 24 h. Matured oocytes were fertilized in vitro and cultured for 168 h. Oocytes that were matured by GC were used as controls. In experiment 1(N = 4), rates of maturation (76–100%, n = 26 to 38), normal fertilization (53–70%, n = 44 to 49), and cleavage (61–77%, n = 114 to 117) were not different among all groups (P > 0.05; Fisher's PLSD test following ANOVA). Blastocyst rates were the same (P > 0.05) for COC matured in MW (50%) and by GC (43%). The rate for CEO that matured in MW (46%) tended to be higher (P = 0.061) than the rate for CEO that matured by GC (31%), and was comparable to the rate for COC matured by GC (43%). The blastocyst rates for DO that matured in MW and by GC were low (6%). In experiment 2 (N = 3), rates of maturation (86–100%, n = 13 to 28), normal fertilization (60–78%, n = 22 to 40), and cleavage (67–73%, n = 85 to 90) were not different among all groups (P > 0.05). However, the blastocyst rate for COC that matured in 1.5-mm-deep MW (53%) was significantly higher than the rates for COC that matured in 0.5-mm-deep MW (38%) and by GC (31%; P < 0.05). The results indicate that the developmental competence of oocytes that matured individually in PDMS MW was greater than that of oocytes that matured by GC. The deeper (1.5 mm) MW were found to be more effective for oocyte maturation than shallow (0.5 mm) MW and GC. The MW might increase density of cumulus cells surrounding oocytes, and the high cell-density enhanced the developmental competence of the oocytes.


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 187-193 ◽  
Author(s):  
So Gun Hong ◽  
Goo Jang ◽  
Hyun Ju Oh ◽  
Ok Jae Koo ◽  
Jung Eun Park ◽  
...  

SummaryBrain-derived neurotrophic factor (BDNF) signalling via tyrosine kinase B receptors may play an important role in ovarian development and function. It has been reported that metformin elevates the activity of Tyrosine kinase receptors and may amplify BDNF signalling. The objective of this study was to investigate the effect of BDNF during in vitro maturation (IVM) and/or in vitro culture (IVC) (Experiment 1), and to evaluate the collaborative effect of BDNF and metformin treatment on the developmental competence of bovine in vitro fertilized (IVF) embryos (Experiment 2). In Experiment 1, BDNF, which was added to our previously established IVM systems, significantly increased the proportions of MII oocytes at both 10 ng/ml (86.7%) and 100 ng/ml (85.4%) compared with the control (64.0%). However, there was no statistically significant difference in blastocyst development between the control or BDNF-supplemented groups. In Experiment 2, in order to investigate the effect of BDNF (10 ng/ml) and/or metformin (10−5 M) per se, TCM-199 without serum and hormones was used as the control IVM medium. The BDNF (48.3%) and BDNF plus metformin (56.5%) significantly enhanced the proportions of MII oocytes compared with the control (34.4%). Although, BDNF or metformin alone had no effect in embryo development, BDNF plus metformin significantly improved early embryo development to the 8–16-cell stage compared with the control (16.5 vs. 5.5%). In conclusion, the combination of BDNF and metformin may have a collaborative effect during the IVM period. These results could further contribute to the establishment of a more efficient bovine in vitro embryo production system.


2006 ◽  
Vol 18 (2) ◽  
pp. 271 ◽  
Author(s):  
T. S. Hussein ◽  
R. B. Gilchrist ◽  
J. G. Thompson

Paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) regulate a broad range of cumulus cell functions including proliferation, differentiation, and apoptosis. The capacity of oocytes to regulate their own microenvironment by OSFs may in turn contribute to oocyte developmental competence. The aim of this study was to determine if OSFs have a direct influence on bovine oocyte developmental competence during in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were obtained by aspiration of >3-mm follicles from abattoir-derived ovaries. IVM was conducted in Bovine VitroMat (Cook Australia, Eight Mile Plains, Brisbane, Australia) supplemented with 0.1 IU/mL rhFSH for 24 h under 6% CO2 in air at 38.5�C. In the first experiment, COCs were co-cultured with denuded oocytes (DOs, 5/COC in 10 �L) beginning at either 0 or 9-h of IVM. To generate the 9-h DO group, COCs were first cultured intact for 9-h and then denuded. In the second experiment, specific OSFs, recombinant bone morphogenetic protein-15 (BMP-15) and growth differentiation factor 9 (GDF-9), were prepared as partially purified supernatants of transfected 293H cells, and used as 10% v/v supplements in Bovine VitroMat. Treatments were: (1) control (no supplement), (2) BMP-15, (3) GDF-9, (4) BMP-15 and GDF-9, and (5) untransfected 293H control. Following maturation, in vitro production of embryos was performed using the Bovine Vitro system (Cook Australia) and blastocysts were examined on Day 8 for development. Developmental data were arcsine-transformed and analyzed by ANOVA, followed by Tukey's test. Cell numbers were analyzed by ANOVA. Co-culturing intact COCs with DOs from 0 or 9 h did not affect cleavage rate, but increased (P < 0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination (50.6 � 1.9 and 61.3 � 1.9%, respectively), compared to COCs cultured alone (40.7 � 1.4%). Therefore, paracrine factors secreted by DOs increased the developmental competence of oocytes matured as COCs. OSFs also improved embryo quality, as co-culture of COCs with DOs (0 or 9 h) significantly increased total cell (156.1 � 1.3 and 159.1 � 1.3, respectively) and trophectoderm (105.7 � 1.3 and 109.8 � 0.4, respectively) numbers, compared to control COCs (total = 148 � 1.2, trophectoderm = 98.2 � 0.8, P < 0.001). BMP-15 alone or with GDF-9 also significantly (P < 0.001) increased the proportion of oocytes that reached the blastocyst stage post insemination (57.5 � 2.4% and 55.1 � 4.5%, respectively), compared to control (41.0 � 0.9%) and 293H-treated (27.1 � 3.1%) COCs. GDF-9 also increased blastocyst yield (49.5 � 3.9%) but not significantly. These results are the first to demonstrate that OSFs, and particularly BMP-15 and GDF-9, directly affect bovine oocyte developmental competence. These results have far-reaching implications for improving the efficiency of IVM in domestic species and human infertility treatment, and support the role of OSF production by oocytes as a diagnostic marker for developmental competence.


2009 ◽  
Vol 21 (1) ◽  
pp. 209
Author(s):  
Y. Serita ◽  
C. Kubota ◽  
T. Kojima

This study tested whether embryo development yield using in vitro fertilization (IVF) could be improved by rocking cultures. Bovine ovaries were obtained at a slaughterhouse and transported to the laboratory within 6 h. Cumulus–oocyte complexes were collected and 20–25 were transferred in 100-μL drops of TCM-199 containing 10% fetal bovine serum and antibiotics under paraffin oil. Maturation was for 20–24 h at 38.5°C under 5% CO2 and 95% air in a humid atmosphere (IVM). In vitro fertilization was carried out for 6 h using frozen–thawed sperm from a single bull in modified Brackett and Oliphant (BO) medium. Presumptive zygotes were cultured in CR1aa supplemented with 10 mg mL–1 of BSA or 5% FBS for 9 d at 38.5°C under 5% CO2, 5% O2, and 90% N2 in a humid atmosphere (IVC). Rocking was performed to a height of 6 cm every 7 s using a Profile Rocker (New Brunswick Scientific Co., Edison, NJ, USA) in an incubator. Dishes were placed at a 15-cm distance from the fulcrum of the rocker. The conventional method (no rocking) served as a control, and every experiment was replicated 3 times. For Experiment 1, the effect of the period of rocking on developmental competence was examined when COC or zygotes were subjected to rocking for IVM, IVF, or IVC (IVM-move, IVF-move, and IVC-move). There were no significant differences in rates of oocyte maturation, cleavage, and development for IVM-move v. the control, or for rate of development between IVC-move and the control. However, the rate of fertilization for IVF-move was higher than that of the control (88.9 v. 67.5%; P < 0.01), and the rate of development was higher for IVF-move than for the control (39.0 v. 25.7%; P < 0.05). For Experiment 2, the effect of rocking frequency during IVF on development was determined. The IVF cultures were rocked every 7, 3.5, and 1.5 s (IVF-1move, IVF-2move, IVF-3move). The rates of cleavage on IVF-1move, IVF-2move, IVF-3move, and the control were 74.3, 69.8, 68.8, and 60.4%, and the rates of development were 39.0, 48.3, 26.2, and 25.7%, respectively. The rates of development on IVF-1move and IVF-2move were significantly different from the control and IVF-3move (P < 0.01). These results showed that rocking during IVF improved fertilization and embryo yield, and that frequency of rocking affected embryo development.


Sign in / Sign up

Export Citation Format

Share Document