108 Single-Cell RNA Sequencing Reveals Blastomere Heterogeneity and Early Lineage Specification Events in Bovine Embryos During Major Embryonic Genome Activation

2018 ◽  
Vol 30 (1) ◽  
pp. 193
Author(s):  
I. Lavagi ◽  
S. Krebs ◽  
K. Simmet ◽  
V. Zakhartchenko ◽  
E. Wolf ◽  
...  

During early embryonic stages, gene products generated by the embryo acquire control over embryonic development. At the 8- to 16-cell stage, major embryonic genome activation (EGA) occurs in bovine embryos. Morphological observations, such as size of blastomeres and distribution of microvilli, suggest heterogeneity of individual cells already at this developmental stage. To study this heterogeneity on the transcriptome level, we performed single-cell RNA sequencing (scRNA-seq) of 161 blastomeres from 14 in vitro-produced bovine embryos at Day 2 and Day 3 post-fertilization. After removing the zona pellucida, blastomeres were mechanically separated in Ca2+- and Mg2+-free PBS, individually collected, and lysed. Complementary DNA libraries were prepared by the single cell RNA-barcoding and sequencing (SCRB-Seq) protocol. Exogenous RNA was added for quality control and cell specific barcodes and unique molecular identifiers (UMI) were used to enable pooling of libraries and to exclude PCR duplicates, respectively. After sequencing (Illumina HiSEqn 1500; 50 nt reads; Illumina Inc., San Diego, CA, USA), UMI were counted with the published Drop-seq pipeline (45,000 UMI on average per library) and cells with UMI count <2.000 were removed. Data were normalized based on UMI and non-supervised clustering analyses of single-cell data were performed (SC3 and M3Drop R packages). The transcriptome profiles of all individual cells were assigned to 6 clusters with specific sets of genes. Sorting cells according to their transcriptome profiles by the CellTree R package (Bioconductor; https://bioconductor.org/packages/release/bioc/html/cellTree.html) resulted in a linear pseudo-timeline. Furthermore, this tool identified 6 groups of genes (topics). Each of them showed an over-representation of distinct Gene Ontology (GO) terms; topic 1, “translation” and “cell division”; topic 2, GO terms involved in translation, RNA splicing and cell division; topic 3, “translation”; topic 4, “ATP synthesis coupled proton transport”; topic 5, “mitochondrial translational elongation”; topic 6, “organic hydroxyl compound transport”. Moreover, increased expression of PCDH10 (protocadherin 10) was observed in the biologically pseudo-ordered more advanced blastomeres. This gene is known to be predominantly expressed in the inner cell mass (ICM) at the blastocyst stage, suggesting that these cells might become ICM. In summary, our study reveals developmental heterogeneity and hints to early lineage specification events in bovine embryos at the time of major EGA.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ilaria Lavagi ◽  
Stefan Krebs ◽  
Kilian Simmet ◽  
Andrea Beck ◽  
Valeri Zakhartchenko ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 148
Author(s):  
C. S. Oliveira ◽  
N. Z. Saraiva ◽  
L. Z. Oliveira ◽  
R. V. Serapião ◽  
M. R. de Lima ◽  
...  

Embryonic genome activation is a crucial step in early embryo development, and is accompanied by a dramatic change in the epigenetic profile of blastomeres. Histone modifications related to euchromatin and heterochromatin can be important parameters to infer developmental competence, as they are affected by manipulation and environmental stress conditions. The aim of this study was to characterise permissive (H3k9ac) and repressive (H3k27me3) histone modifications during the embryonic genome activation cell cycle in bovine embryos, regarding correlation between those marks and variance among blastomeres. For that, bovine embryos were produced by IVF and cultured in SOF medium supplemented with 5 mg mL–1 of BSA and 2.5% FCS in 5% O2 in an air atmosphere for 5 days (70 h after IVF). The 8 to 16 cell embryos were fixed in 4% paraformaldehyde and submitted to H3k9ac and H3k27me3 immunofluorescence assay (mouse anti-H3K9ac monoclonal antibody, 1 : 200; Sigma; rabbit anti-H3k27me3 monoclonal antibody, 1 : 200; Upstate, Charlottesville, VA, USA). Nuclei were counterstained with Hoechst 33342. Images of each embryo were captured (AxioCam, Carl Zeiss, São Paulo, Brazil) and measured for nuclear fluorescence intensity in each blastomere using Adobe Photoshop CS3 (Adobe Systems, San Jose, CA, USA). Mean levels were compared using the Mann-Whitney test and variances were compared using F-test (SAS 9.1, SAS Institute Inc., Cary, NC, USA; P = 0.05). We evaluated 2 replicates and 12 embryos during the transition from the 8 to 16 cell stages, totaling 169 blastomeres. Global H3k27me3 levels varied accordingly to H3k9ac levels, as indicated by a high Pearson correlation coefficient (r = 0.913). Levels of each blastomere were normalized to the lowest level obtained within each embryo. Some embryos displayed a high variation between blastomeres, and, for further analysis, we divided the embryos into groups: group A for embryos that presented similar H3k9ac levels between blastomeres (8 embryos, 66%), and group B for embryos that exhibited higher heterogeneity between blastomeres (at least 2 blastomeres presenting a 2-fold increase compared to the lowest blastomere; 4 embryos, 33%). Mean H3k9ac and H3k27me3 normalized levels were lower for group A [H3k9ac: 1.35 ± 0.29 (A), 1.94 ± 1.02* (B); H3k27me3: 1.33 ± 0.24 (A), 1.99 ± 0.77 (B)], and group A displayed lower variance values (H3k9ac: 0.07 (A), 1.05* (B); H3k27me3: 0.06 (A), 0.60 (B)]. Within each embryo, blastomeres were sorted in ascending order for H3k9ac level (1 to 16), and compared between groups A and B. We detected that mean levels differed (P < 0.05) between groups from blastomere 9 to 16 for H3k9ac and 10 to 16 for H3k27me3. Therefore, in 8- to 16-cell stage embryos, the H3k27me3 repressive mark is highly correlated with the H3k9ac permissive mark. Also, our results describe the presence of 2 distinguishable populations of bovine embryos at this stage, considering their epigenetic status. One population presented similar levels of repressive and permissive marks among blastomeres, whereas the second one displayed a remarkable variation among their blastomeres. This observation should be further studied, as it might reflect distinct cleavage pattern embryos and blastomere competence. The authors acknowledge FAPESP, FAPERJ and CNPq for financial support.


Biologia ◽  
2010 ◽  
Vol 65 (3) ◽  
Author(s):  
Mária Kovalská ◽  
Ida Petrovičová ◽  
František Strejček ◽  
Marian Adamkov ◽  
Erika Halašová ◽  
...  

AbstractThe early stages of embryonic development are maternally driven. As development proceeds, maternally inherited informational molecules decay, and embryogenesis becomes dependent on de novo synthesized RNAs of embryonic genome. The aim of the present study is to investigate the role of de novo transcription in the development of embryos during embryonic genome activation. Autoradiography for detection of transcriptional activity and transmission electron microscopy were applied in in vitro produced bovine embryos cultured to the late 8-cell stage with or without (control group) α-amanitin, specific inhibitor of RNA-polymerases II and III transcription. The α-amanitin (AA) groups presented three sets of embryos cultivated with AA in different time intervals (6, 9 and 12 h). In control group, nucleoplasm and nucleolar structures displayed strong autoradiographic labeling and showed initial development of fibrillo-granular nucleoli. In α-amanitin groups, lack of autoradiographic labeling and disintegrated nucleolus precursor bodies (NPBs) stage were observed. Inhibition of RNA polymerase II (RNA pol II) already in the early phases of embryonic genome activation has detrimental effect on nucleolar formation and embryo survival, what was shown for the first time.


1999 ◽  
Vol 51 (1) ◽  
pp. 188 ◽  
Author(s):  
E-H Park ◽  
R-C Chian ◽  
H-M Chung ◽  
J-G Lim ◽  
J-J Ko ◽  
...  

2017 ◽  
Author(s):  
Isabelle Stévant ◽  
Yasmine Neirjinck ◽  
Christelle Borel ◽  
Jessica Escoffier ◽  
Lee B. Smith ◽  
...  

SummaryThe gonad is a unique biological system for studying cell fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time course single cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior sex determination. A subset of these progenitors differentiate into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergo significant transcriptional changes that restrict their competence towards a steroidogenic fate required for the differentiation of fetal Leydig cells. These results question the dogma of the existence of two distinct somatic cell lineages at the onset of sex determination and propose a new model of lineage specification from a unique progenitor cell population.


Cell Reports ◽  
2018 ◽  
Vol 22 (6) ◽  
pp. 1589-1599 ◽  
Author(s):  
Isabelle Stévant ◽  
Yasmine Neirijnck ◽  
Christelle Borel ◽  
Jessica Escoffier ◽  
Lee B. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document