Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales)

2019 ◽  
Author(s):  
Lars Nauheimer ◽  
Lujing Cui ◽  
Charles Clarke ◽  
Darren M. Crayn ◽  
Greg Bourke ◽  
...  

Nepenthes is a genus of carnivorous plants consisting of ~160 species that are distributed in the paleotropics. Molecular systematics has so far not been able to resolve evolutionary relationships of most species because of the limited genetic divergence in previous studies. In the present study, we used a genome-skimming approach to infer phylogenetic relationships on the basis of 81 plastid genes and the highly repetitive rRNA (external transcribed spacer (ETS)–26S) for 39 accessions representing 34 species from eight sections. Maximum-likelihood analysis and Bayesian inference were performed separately for the nuclear and the plastid datasets. Divergence-time estimations were conducted on the basis of a relaxed molecular-clock model, using secondary calibration points. The phylogenetic analyses of the nuclear and plastid datasets yielded well resolved and supported phylogenies. Incongruences between the two datasets were detected, suggesting multiple hybridisation events or incomplete lineage sorting in the deeper and more recent evolutionary history of the genus. The inclusion of several known and suspected hybrids in the phylogenetic analysis provided insights into their parentage. Divergence-time estimations placed the crown diversification of Nepenthes in the early Miocene, c. 20 million years ago. This study showed that genome skimming provides well resolved nuclear and plastid phylogenies that provide valuable insights into the complex evolutionary relationships of Nepenthes.

2019 ◽  
Author(s):  
Stella Huynh ◽  
Thomas Marcussen ◽  
François Felber ◽  
Christian Parisod

SummaryEvolutionary relationships among theAegilops-Triticumrelatives of cultivated wheats have been difficult to resolve owing to incomplete lineage sorting and reticulate evolution. Recent studies have suggested that the wheat D-genome lineage (progenitor ofAe. tauschii) originated through homoploid hybridization between the A-genome lineage (progenitor ofTriticums.str.) and the B-genome lineage (progenitor ofAe. speltoides). Scenarios of reticulation have been debated, calling for adequate phylogenetic analyses based on comprehensive sampling. To reconstruct the evolution ofAegilops-Triticumdiploids, we here combined high-throughput sequencing of 38 nuclear low-copy loci of multiple accessions of all 13 species with inferences of the species phylogeny using the full-parameterized MCMC_SEQ method. Phylogenies recovered a monophyleticAegilops-Triticumlineage that began diversifying ~6.5 Ma ago and gave rise to four sublineages, i.e. the A- (2 species), B- (1 species), D- (9 species) and T- (Ae. mutica) genome lineage. Full-parameterized phylogenies as well as patterns of tree dilation and tree compression supported a hybrid origin of the D-genome lineage from A and B ~4.1 Ma ago, and did not indicate additional hybridization events. This comprehensive and dated phylogeny of wheat relatives indicates that the origin of the hybrid D-genome was followed by intense diversification into almost all diploid as well as allopolyploid wild wheats.


2021 ◽  
Author(s):  
Niklas Reichelt ◽  
Jun Wen ◽  
Claudia Paetzold ◽  
Marc Appelhans

Background and aims: Zanthoxylum L. is the only pantropical genus within Rutaceae, with a few species native to temperate eastern Asia and North America. Efforts using Sanger sequencing failed to resolve the backbone phylogeny of Zanthoxylum. In this study, we employed target enrichment high-throughput sequencing to improve resolution. Gene trees were examined for concordance and sectional classifications of Zanthoxylum were evaluated. Off-target reads were investigated to identify putative single-copy markers for bait refinement, and low-copy markers for evidence of putative hybridization events. Methods: We developed a custom bait set for target enrichment of 745 exons in Zanthoxylum and applied it to 45 Zanthoxylum species and one Tetradium species as the outgroup. Illumina reads were processed via the HybPhyloMaker pipeline. Phylogenetic inferences were conducted using coalescent and concatenated methods. Concordance was assessed using quartet sampling. Off-target reads were assembled and putative single- and low-copy genes were extracted. Additional phylogenetic analyses were performed based on these alignments. Key results: Four major clades are supported within Zanthoxylum: the African clade, the Z. asiaticum clade, the Asian-Pacific-Australian clade, and the American-eastern Asian clade. While overall support has improved, regions of conflict are similar to those previously observed. Gene tree discordances indicate a hybridization event in the ancestor of the Hawaiian lineage, and incomplete lineage sorting for the American backbone. Off-target putative single-copy genes largely confirm on-target results, and putative low-copy genes provide additional evidence for hybridization in the Hawaiian lineage. Only two of the five sections of Zanthoxylum are resolved as monophyletic. Conclusion: Target enrichment is suitable to assess phylogenetic relationships in Zanthoxylum. Our phylogenetic analyses reveal that current sectional classifications need revision. Quartet tree concordance indicates several instances of reticulate evolution. Off-target reads are proven useful to identify additional phylogenetically informative regions for bait refinement or gene tree based approaches.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 455
Author(s):  
Na Ra Jeong ◽  
Min Jee Kim ◽  
Sung-Soo Kim ◽  
Sei-Woong Choi ◽  
Iksoo Kim

Conogethes pinicolalis has long been considered as a Pinaceae-feeding type of the yellow peach moth, C. punctiferalis, in Korea. In this study, the divergence of C. pinicolalis from the fruit-feeding moth C. punctiferalis was analyzed in terms of morphology, ecology, and genetics. C. pinicolalis differs from C. punctiferalis in several morphological features. Through field observation, we confirmed that pine trees are the host plants for the first generation of C. pinicolalis larvae, in contrast to fruit-feeding C. punctiferalis larvae. We successfully reared C. pinicolalis larvae to adults by providing them pine needles as a diet. From a genetic perspective, the sequences of mitochondrial COI of these two species substantially diverged by an average of 5.46%; moreover, phylogenetic analysis clearly assigned each species to an independent clade. On the other hand, nuclear EF1α showed a lower sequence divergence (2.10%) than COI. Overall, EF1α-based phylogenetic analysis confirmed each species as an independent clade, but a few haplotypes of EF1α indicated incomplete lineage sorting between these two species. In conclusion, our results demonstrate that C. pinicolalis is an independent species according to general taxonomic criteria; however, analysis of the EF1α sequence revealed a short divergence time.


2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


2021 ◽  
Author(s):  
Caitlin Cherryh ◽  
Bui Quang Minh ◽  
Rob Lanfear

AbstractMost phylogenetic analyses assume that the evolutionary history of an alignment (either that of a single locus, or of multiple concatenated loci) can be described by a single bifurcating tree, the so-called the treelikeness assumption. Treelikeness can be violated by biological events such as recombination, introgression, or incomplete lineage sorting, and by systematic errors in phylogenetic analyses. The incorrect assumption of treelikeness may then mislead phylogenetic inferences. To quantify and test for treelikeness in alignments, we develop a test statistic which we call the tree proportion. This statistic quantifies the proportion of the edge weights in a phylogenetic network that are represented in a bifurcating phylogenetic tree of the same alignment. We extend this statistic to a statistical test of treelikeness using a parametric bootstrap. We use extensive simulations to compare tree proportion to a range of related approaches. We show that tree proportion successfully identifies non-treelikeness in a wide range of simulation scenarios, and discuss its strengths and weaknesses compared to other approaches. The power of the tree-proportion test to reject non-treelike alignments can be lower than some other approaches, but these approaches tend to be limited in their scope and/or the ease with which they can be interpreted. Our recommendation is to test treelikeness of sequence alignments with both tree proportion and mosaic methods such as 3Seq. The scripts necessary to replicate this study are available at https://github.com/caitlinch/treelikeness


2017 ◽  
Author(s):  
Meng Wu ◽  
Jamie L. Kostyun ◽  
Matthew W. Hahn ◽  
Leonie Moyle

ABSTRACTPhylogenetic analyses of trait evolution can provide insight into the evolutionary processes that initiate and drive phenotypic diversification. However, recent phylogenomic studies have revealed extensive gene tree-species tree discordance, which can lead to incorrect inferences of trait evolution if only a single species tree is used for analysis. This phenomenon—dubbed “hemiplasy”—is particularly important to consider during analyses of character evolution in rapidly radiating groups, where discordance is widespread. Here we generate whole-transcriptome data for a phylogenetic analysis of 14 species in the plant genus Jaltomata (the sister clade to Solanum), which has experienced rapid, recent trait evolution, including in fruit and nectar color, and flower size and shape. Consistent with other radiations, we find evidence for rampant gene tree discordance due to incomplete lineage sorting (ILS) and several introgression events among the well-supported subclades. Since both ILS and introgression increase the probability of hemiplasy, we perform several analyses that take discordance into account while identifying genes that might contribute to phenotypic evolution. Despite discordance, the history of fruit color evolution in Jaltomata can be inferred with high confidence, and we find evidence of de novo adaptive evolution at individual genes associated with fruit color variation. In contrast, hemiplasy appears to strongly affect inferences about floral character transitions in Jaltomata, and we identify candidate loci that could arise either from multiple lineage-specific substitutions or standing ancestral polymorphisms. Our analysis provides a generalizable example of how to manage discordance when identifying loci associated with trait evolution in a radiating lineage.


2021 ◽  
Vol 7 (29) ◽  
pp. eabc0776
Author(s):  
Nathan K. Schaefer ◽  
Beth Shapiro ◽  
Richard E. Green

Many humans carry genes from Neanderthals, a legacy of past admixture. Existing methods detect this archaic hominin ancestry within human genomes using patterns of linkage disequilibrium or direct comparison to Neanderthal genomes. Each of these methods is limited in sensitivity and scalability. We describe a new ancestral recombination graph inference algorithm that scales to large genome-wide datasets and demonstrate its accuracy on real and simulated data. We then generate a genome-wide ancestral recombination graph including human and archaic hominin genomes. From this, we generate a map within human genomes of archaic ancestry and of genomic regions not shared with archaic hominins either by admixture or incomplete lineage sorting. We find that only 1.5 to 7% of the modern human genome is uniquely human. We also find evidence of multiple bursts of adaptive changes specific to modern humans within the past 600,000 years involving genes related to brain development and function.


2019 ◽  
Author(s):  
Joshua I Brian ◽  
Simon K Davy ◽  
Shaun P Wilkinson

Coral reefs rely on their intracellular dinoflagellate symbionts (family Symbiodiniaceae) for nutritional provision in nutrient-poor waters, yet this association is threatened by thermally stressful conditions. Despite this, the evolutionary potential of these symbionts remains poorly characterised. In this study, we tested the potential for divergent Symbiodiniaceae types to sexually reproduce (i.e. hybridise) within Cladocopium, the most ecologically prevalent genus in this family. With sequence data from three organelles (cob gene, mitochondria; psbAncr region, chloroplast; and ITS2 region, nucleus), we utilised the Incongruence Length Difference test, Approximately Unbiased test, tree hybridisation analyses and visual inspection of raw data in stepwise fashion to highlight incongruences between organelles, and thus provide evidence of reticulate evolution. Using this approach, we identified three putative hybrid Cladocopium samples among the 158 analysed, at two of the seven sites sampled. These samples were identified as the common Cladocopium types C40 or C1 with respect to the mitochondria and chloroplasts, but the rarer types C3z, C3u and C1# with respect to their nuclear identity. These five Cladocopium types have previously been confirmed as evolutionarily distinct and were also recovered in non-incongruent samples multiple times, which is strongly suggestive that they sexually reproduced to produce the incongruent samples. A concomitant inspection of Next Generation Sequencing data for these samples suggests that other plausible explanations, such as incomplete lineage sorting, are much less likely. The approach taken in this study allows incongruences between gene regions to be identified with confidence, and brings new light to the evolutionary potential within Symbiodiniaceae.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7178 ◽  
Author(s):  
Joshua I. Brian ◽  
Simon K. Davy ◽  
Shaun P. Wilkinson

Coral reefs rely on their intracellular dinoflagellate symbionts (family Symbiodiniaceae) for nutritional provision in nutrient-poor waters, yet this association is threatened by thermally stressful conditions. Despite this, the evolutionary potential of these symbionts remains poorly characterised. In this study, we tested the potential for divergent Symbiodiniaceae types to sexually reproduce (i.e. hybridise) within Cladocopium, the most ecologically prevalent genus in this family. With sequence data from three organelles (cob gene, mitochondrion; psbAncr region, chloroplast; and ITS2 region, nucleus), we utilised the Incongruence Length Difference test, Approximately Unbiased test, tree hybridisation analyses and visual inspection of raw data in stepwise fashion to highlight incongruences between organelles, and thus provide evidence of reticulate evolution. Using this approach, we identified three putative hybrid Cladocopium samples among the 158 analysed, at two of the seven sites sampled. These samples were identified as the common Cladocopium types C40 or C1 with respect to the mitochondria and chloroplasts, but the rarer types C3z, C3u and C1# with respect to their nuclear identity. These five Cladocopium types have previously been confirmed as evolutionarily distinct and were also recovered in non-incongruent samples multiple times, which is strongly suggestive that they sexually reproduced to produce the incongruent samples. A concomitant inspection of next generation sequencing data for these samples suggests that other plausible explanations, such as incomplete lineage sorting or the presence of co-dominance, are much less likely. The approach taken in this study allows incongruences between gene regions to be identified with confidence, and brings new light to the evolutionary potential within Symbiodiniaceae.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinyuan Chen ◽  
Guili Wu ◽  
Nawal Shrestha ◽  
Shuang Wu ◽  
Wei Guo ◽  
...  

Medicago and its relatives, Trigonella and Melilotus comprise the most important forage resources globally. The alfalfa selected from the wild relatives has been cultivated worldwide as the forage queen. In the Flora of China, 15 Medicago, eight Trigonella, and four Melilotus species are recorded, of which six Medicago and two Trigonella species are introduced. Although several studies have been conducted to investigate the phylogenetic relationship within the three genera, many Chinese naturally distributed or endemic species are not included in those studies. Therefore, the taxonomic identity and phylogenetic relationship of these species remains unclear. In this study, we collected samples representing 18 out of 19 Chinese naturally distributed species of these three genera and three introduced Medicago species, and applied an integrative approach by combining evidences from population-based morphological clusters and molecular data to investigate species boundaries. A total of 186 individuals selected from 156 populations and 454 individuals from 124 populations were collected for genetic and morphological analyses, respectively. We sequenced three commonly used DNA barcodes (trnH-psbA, trnK-matK, and ITS) and one nuclear marker (GA3ox1) for phylogenetic analyses. We found that 16 out of 21 species could be well delimited based on phylogenetic analyses and morphological clusters. Two Trigonella species may be merged as one species or treated as two subspecies, and Medicago falcata should be treated as a subspecies of the M. sativa complex. We further found that major incongruences between the chloroplast and nuclear trees mainly occurred among the deep diverging lineages, which may be resulted from hybridization, incomplete lineage sorting and/or sampling errors. Further studies involving a finer sampling of species associated with large scale genomic data should be employed to better understand the species delimitation of these three genera.


Sign in / Sign up

Export Citation Format

Share Document