Field-based measurements of sulfur gas emissions from an agricultural coastal acid sulfate soil, eastern Australia

Soil Research ◽  
2011 ◽  
Vol 49 (6) ◽  
pp. 471 ◽  
Author(s):  
Andrew S. Kinsela ◽  
O. Tom Denmead ◽  
Bennett C. T. Macdonald ◽  
Michael D. Melville ◽  
Jason K. Reynolds ◽  
...  

The emissions of biogenic hydrogen sulfide (H2S) and sulfur dioxide (SO2) play important roles in the global atmospheric sulfur (S) cycle. Field-based investigations using ultraviolet fluorescence spectroscopy show that drained acid sulfate soils (ASS) are a potentially unaccounted source of biogenic H2S and SO2. Significant diurnal variations were evident in SO2 fluxes, with average daytime measurements 9.3–16.5-fold greater than night-time emissions. Similar diurnal patterns in H2S fluxes were observed but proved statistically insignificant. The results from simultaneously collected micrometeorological measurements suggest that emissions of SO2 and H2S are most likely occurring via different processes. The SO2 fluxes are closely linked to surface soil temperature and moisture content, whereas H2S is constantly emitted from the land surface at the two study sites. Drained ASS are most likely mapped as agricultural lands rather than drained backswamps. Therefore, these areas are likely to be assigned H2S and SO2 flux values of zero in greenhouse gas species inventories. These findings suggest a need to expand these measurements to other drained ASS areas to refine regional (and possibly global) atmospheric S budgets. Further research is necessary to elucidate the sources of measured S compounds, and specifically whether they are limited to individual agricultural drainage patterns in ASS.

2010 ◽  
Vol 61 (1) ◽  
pp. 129 ◽  
Author(s):  
Stuart L. Simpson ◽  
Rob W. Fitzpatrick ◽  
Paul Shand ◽  
Brad M. Angel ◽  
David A. Spadaro ◽  
...  

The recent drought in south-eastern Australia has exposed to air, large areas of acid sulfate soils within the River Murray system. Oxidation of these soils has the potential to release acidity, nutrients and metals. The present study investigated the mobilisation of these substances following the rewetting of dried soils with River Murray water. Trace metal concentrations were at background levels in most soils. During 24-h mobilisation tests, the water pH was effectively buffered to the pH of the soil. The release of nutrients was low. Metal release was rapid and the dissolved concentrations of many metals exceeded the Australian water quality guidelines (WQGs) in most tests. The concentrations of dissolved Al, Cu and Zn were often greater than 100× the WQGs and strong relationships existed between dissolved metal release and soil pH. Attenuation of dissolved metal concentrations through co-precipitation and adsorption to Al and Fe precipitates was an important process during mixing of acidic, metal-rich waters with River Murray water. The study demonstrated that the rewetting of dried acid sulfate soils may release significant quantities of metals and a high level of land and water management is required to counter the effects of such climate change events.


Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 787 ◽  
Author(s):  
C. C. Yau ◽  
V. N. L. Wong ◽  
D. M. Kennedy

The distribution and geochemical characterisation of coastal acid sulfate soils (CASS) in Victoria in southern Australia is relatively poorly understood. This study investigated and characterised CASS and sulfidic material at four sites (wetland (WE), swamp scrub (SS), woodland (WO) and coastal tussock saltmarsh (CTS)) on the estuarine floodplain of the Anglesea River in southern Australia. Shell material and seawater buffered acidity generated and provided acid-neutralising capacity (up to 10.65% CaCO3-equivalent) at the sites located on the lower estuarine floodplain (WO and CTS). The SS site, located on the upper estuarine floodplain, can potentially acidify soil and water due to high positive net acidity (>200molH+t–1) and a limited acid-neutralising capacity. High titratable actual acidity in the SS and WO profiles (>270molH+t–1) were the result of high organic matter in peat-like layers that can potentially contribute organic acids in addition to acidity formed from oxidation of sulfidic sediments. The results of the present study suggest that the environments and chemistry of acid sulfate soils in southern Australia are distinct from those located in eastern Australia; this may be related to differences in estuarine processes that affect formation of acid sulfate soils, as well as the geomorphology and geology of the catchment.


Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 527 ◽  
Author(s):  
D. S. Fanning ◽  
Cary Coppock ◽  
Z. W. Orndorff ◽  
W. L. Daniels ◽  
M. C. Rabenhorst

This paper reports on a situation where severe active acid sulfate soils were brought into existence by the construction of a new (opened in 2002) airport in Stafford County, VA, approximately 60 km south-west of Washington, DC. About 290 ha of new land surface was brought into existence that consisted of both scalped land surfaces on steep slopes, and spoil (fill), some of which was graded to provide level land surfaces for paved runways. Over 150 ha of ultra acidic (pH <3.5 at soil surface) post-construction acid sulfate soils remained barren for over 2 years before the acid sulfate soil situation was properly recognised. Construction took place in an originally dissected landscape with about 30 m of local relief. The construction was designed to balance the cut and fill areas so that soil materials would not need to be taken from the area or brought to it from other locations. This resulted in some deep cuts (scalped surfaces) in the higher parts of the landscapes, which retained slopes of about 25%. Great difficulty was encountered in establishing vegetation on these surfaces. The exposed sulfidic materials were dense, commonly on steep slopes, and developed low pHs, some <pH 2, after exposure. After a dry period in the autumn of 2001, sulfuric horizons crusted over with bitter hydrated sulfate salt minerals had formed in the surface of sulfidic materials originally exposed in 1999. By X-ray diffraction, halotrychite, Fe2+Al2(SO4)4.22H2O, was identified as a main white salt mineral and copiapite group minerals, e.g. Al2/3Fe3+4(SO4)6(OH)2.20H2O for aluminocopiapite, were identified as a yellow salt minerals. Information about, and photographs of, the site, soils, and drainage waters are presented, including examples of deleterious environmental impacts. Intensive reclamation/revegetation measures were initiated in 2002. These involved the application of high rates of lime stabilised biosolids (sewage sludge) incorporated to a depth of about 0.15 m to neutralise acidity and add organic matter and nutrients to the soils. These measures permitted the establishment of acid- and salt-tolerant grasses on the acid sulfate soils and caused dramatic increases in pH and drops in Fe and Al levels in stream waters leaving the site. However, they also caused initial large increases in ammonia/ammonium-N in the waters and subsequent increases in NO3-N in the waters. Experience with this and other similar sites demonstrates the need for engineers involved with earth-moving construction activities to be educated in the principles of acid sulfate soils so that the number of such disturbances that result in the creation of active acid sulfate soils can be lessened or, preferably, eliminated. Plans for recognition and reclamation of acid sulfate soil situations should be built into the construction plans and designs when it is necessary to disturb sulfidic materials.


2007 ◽  
Vol 22 (12) ◽  
pp. 2695-2705 ◽  
Author(s):  
B.C.T. Macdonald ◽  
I. White ◽  
M.E. Åström ◽  
A.F. Keene ◽  
M.D. Melville ◽  
...  

2009 ◽  
Vol 4 (1) ◽  
pp. 125
Author(s):  
Akhmad Mustafa ◽  
Rachmansyah Rachmansyah ◽  
Dody Dharmawan Trijuno ◽  
Ruslaini Ruslaini

Rumput laut (Gracilaria verrucosa) telah dibudidayakan di tambak tanah sulfat masam dengan kualitas dan kuantitas produksi yang relatif tinggi. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengetahui peubah kualitas air yang mempengaruhi laju pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur Provinsi Sulawesi Selatan. Pemeliharaan rumput laut dilakukan di 30 petak tambak  terpilih selama 6 minggu. Bibit rumput laut dengan bobot 100 g basah ditebar dalam hapa berukuran 1,0 m x 1,0 m x 1,2 m. Peubah tidak bebas yang diamati adalah laju pertumbuhan relatif, sedangkan peubah bebas adalah peubah kualitas air yang meliputi: intensitas cahaya, salinitas, suhu, pH, karbondioksida, nitrat, amonium, fosfat, dan besi. Analisis regresi berganda digunakan untuk menentukan peubah bebas yang dapat digunakan untuk memprediksi peubah tidak bebas. Hasil penelitian menunjukkan bahwa laju pertumbuhan relatif rumput laut di tambak tanah sulfat masam berkisar antara 1,52% dan 3,63%/hari dengan rata-rata 2,88% ± 0,56%/hari. Di antara 9 peubah kualitas air yang diamati ternyata hanya 5 peubah kualitas air yaitu: nitrat, salinitas, amonium, besi, dan fosfat yang mempengaruhi pertumbuhan rumput laut secara nyata. Untuk meningkatkan pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur dapat dilakukan dengan pemberian pupuk yang mengandung nitrogen untuk meningkatkan kandungan amonium dan nitrat serta pemberian pupuk yang mengandung fosfor untuk meningkatkan kandungan fosfat sampai pada nilai tertentu, melakukan remediasi untuk menurunkan kandungan besi serta memelihara rumput laut pada salinitas air yang lebih tinggi, tetapi tidak melebihi 30 ppt.Seaweed (Gracilaria verrucosa) has been cultivated in acid sulfate soil-affected ponds with relatively high quality and quantity of seaweed production. A research has been conducted to study water quality variables that influence the growth of seaweed in acid sulfate soil-affected ponds of Angkona Sub-district East Luwu Regency South Sulawesi Province. Cultivation of seaweed was done for six weeks in 30 selected brackishwater ponds. Seeds of seaweed with weight of 100 g were stocked in hapa sized 1.0 m x 1.0 m x 1.2 m. Dependent variable that was observed was specific growth rate, whereas independent variables were water quality variables including light intensity, salinity, temperature, pH, carbondioxide, nitrate, ammonium, phosphate, and iron. Analyses of multiple regressions were used to determine the independent variables which could be used to predict the dependent variable. Research result indicated that relative growth rate of seaweed in acid sulfate soils-affected brackishwater ponds ranged from 1.52% to 3.63%/day with 2.88% ± 0.56%/day in average. Among nine observed water quality variables, only five variables namely: nitrate, salinity, ammonium, phosphate and iron influence significantly on the growth of seaweed in acid sulfate soils-affected brackishwater ponds. The growth of seaweed in acid sulfate soils-affected brackishwater ponds of Angkona District East Luwu Regency, can be improved by using nitrogen-based fertilizers to increase ammonium and nitrate contents and also fertilizers which contain phosphorus to improve phosphate content to a certain level. Pond remediation to decrease iron content and also rearing seaweed at higher salinity (but less than 30 ppt) can also be alternatives to increase the growth of seaweed.


Sign in / Sign up

Export Citation Format

Share Document