Determination of hydraulic conductivity as a function of depth and water content for soil in situ

Soil Research ◽  
1965 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
CW Rose ◽  
WR Stern ◽  
JE Drummond

A theory is presented to calculate hydraulic conductivity from successive measurements of water content profiles for soil in situ. With unsaturated soil, potential gradients are inferred using moisture characteristics, but with saturated soil these gradients must be measured directly. The weight of overburden can affect in situ soil water suction, and a method for determining this effect is given. The theory was applied to a soil profile with marked changes in moisture characteristics and texture, and conductivity was determined for several depths as a function of water content.

1994 ◽  
Vol 34 (7) ◽  
pp. 1085 ◽  
Author(s):  
L Cai ◽  
SA Prathapar ◽  
HG Beecher

A modelling study was conducted to evaluate water and salt movement within a transitional red-brown earth with saline B horizon soil when such waters are used for ponding in summer. The model was calibrated using previously published experimental data. The calibrated model was used to evaluate the effect of depth to watertable, saturated hydraulic conductivity, and ponding water salinity on infiltration, water and salt movement within the soil profile, and recharge. The study showed that when initial soil water content and the saturated hydraulic conductivity (Ks) are low, infiltrating water will be stored within the soil profile even in the absence of a shallow watertable. Once the soil water content is high, however, recharge will be significant in winter, even if there is no net infiltration at the soil surface. Infiltration rates depend more on Ks than the depth to watertable if it is at, or below, 1.5 m from the soil surface. When Ks is high, recharge under ponding will be higher than that under winter fallow. Subsequent ponding in summer and fallow in winter tend to leach salts from the soil profile, the leaching rate dependent on Ks. During winter fallow, due to net evaporation, salts tend to move upwards and concentrate near the soil surface. In the presence of shallow watertables, leached salts tend to concentrate at, or near, the watertable.


2018 ◽  
Vol 40 (3) ◽  
pp. 1409
Author(s):  
P. Giannoulopoulos ◽  
A. Poulovassilis

The following work refers to an experimental methodology employed for in situ monitoring of specific soil water fluxes constituting water balance components. The test area is located in the plain of Argos - Greece, within an orange grove. A micrometeorological station was installed in the site, equipped with several sensors for real time monitoring of various atmospheric parameters as well as water content and temperature in the soil profile. The soil profile was made accessible for sampling through a rectangular pit which was excavated close to the station. The soil water content was monitored making use ofTDR sensors which were calibrated against the traditional neutron probe technique and also by soil sampling. Tensiometeres were also installed in four different depths for monitoring the matrix potential. A software programme was developed for the analysis and the evaluation of the data collected in a 10 - minute time step. The analysis of the data showed that the three - year average of Actual Evapotranspiration, in this irrigated field, was approximately 857 mm, out of which almost 600mm occur between April and September and 260 mm in the winter period. Those results show that there is no significant water surplus for deep infiltration and aquifer recharge in clayey and clay - loam soils in this region.


Soil Research ◽  
2001 ◽  
Vol 39 (4) ◽  
pp. 851 ◽  
Author(s):  
P. L. Libardi ◽  
P. L. Libardi ◽  
K. Reichardt ◽  
K. Reichardt

The method of Libardi to estimate soil hydraulic conductivity in the field, during the redistribution of soil water, is discussed and improved. It is shown that if the saturated soil water content is measured at the soil surface, values at any other depth can be calculated from the database used to compute hydraulic conductivity. Since the saturated soil water content is difficult to measure and critical to the establishment of the hydraulic conductivity functions, this is an important refinement of the method. It is also shown that the unit hydraulic gradient assumption, which is part of the methodology, does not introduce significant errors in the estimation of soil hydraulic conductivity.


2002 ◽  
Author(s):  
Shmuel Friedman ◽  
Jon Wraith ◽  
Dani Or

Time Domain Reflectometry (TDR) and other in-situ and remote sensing dielectric methods for determining the soil water content had become standard in both research and practice in the last two decades. Limitations of existing dielectric methods in some soils, and introduction of new agricultural measurement devices or approaches based on soil dielectric properties mandate improved understanding of the relationship between the measured effective permittivity (dielectric constant) and the soil water content. Mounting evidence indicates that consideration must be given not only to the volume fractions of soil constituents, as most mixing models assume, but also to soil attributes and ambient temperature in order to reduce errors in interpreting measured effective permittivities. The major objective of the present research project was to investigate the effects of the soil geometrical attributes and interfacial processes (bound water) on the effective permittivity of the soil, and to develop a theoretical frame for improved, soil-specific effective permittivity- water content calibration curves, which are based on easily attainable soil properties. After initializing the experimental investigation of the effective permittivity - water content relationship, we realized that the first step for water content determination by the Time Domain Reflectometry (TDR) method, namely, the TDR measurement of the soil effective permittivity still requires standardization and improvement, and we also made more efforts than originally planned towards this objective. The findings of the BARD project, related to these two consequential steps involved in TDR measurement of the soil water content, are expected to improve the accuracy of soil water content determination by existing in-situ and remote sensing dielectric methods and to help evaluate new water content sensors based on soil electrical properties. A more precise water content determination is expected to result in reduced irrigation levels, a matter which is beneficial first to American and Israeli farmers, and also to hydrologists and environmentalists dealing with production and assessment of contamination hazards of this progressively more precious natural resource. The improved understanding of the way the soil geometrical attributes affect its effective permittivity is expected to contribute to our understanding and predicting capability of other, related soil transport properties such as electrical and thermal conductivity, and diffusion coefficients of solutes and gas molecules. In addition, to the originally planned research activities we also investigated other related problems and made many contributions of short and longer terms benefits. These efforts include: Developing a method and a special TDR probe for using TDR systems to determine also the soil's matric potential; Developing a methodology for utilizing the thermodielectric effect, namely, the variation of the soil's effective permittivity with temperature, to evaluate its specific surface area; Developing a simple method for characterizing particle shape by measuring the repose angle of a granular material avalanching in water; Measurements and characterization of the pore scale, saturation degree - dependent anisotropy factor for electrical and hydraulic conductivities; Studying the dielectric properties of cereal grains towards improved determination of their water content. A reliable evaluation of the soil textural attributes (e.g. the specific surface area mentioned above) and its water content is essential for intensive irrigation and fertilization processes and within extensive precision agriculture management. The findings of the present research project are expected to improve the determination of cereal grain water content by on-line dielectric methods. A precise evaluation of grain water content is essential for pricing and evaluation of drying-before-storage requirements, issues involving energy savings and commercial aspects of major economic importance to the American agriculture. The results and methodologies developed within the above mentioned side studies are expected to be beneficial to also other industrial and environmental practices requiring the water content determination and characterization of granular materials.  


2015 ◽  
Vol 63 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Hana Hlaváčiková ◽  
Viliam Novák ◽  
Ladislav Holko

Abstract Stony soils are composed of fractions (rock fragments and fine soil) with different hydrophysical characteristics. Although they are abundant in many catchments, their properties are still not well understood. This article presents basic characteristics (texture, stoniness, saturated hydraulic conductivity, and soil water retention) of stony soils from a mountain catchment located in the highest part of the Carpathian Mountains and summarizes results of water flow modeling through a hypothetical stony soil profile. Numerical simulations indicate the highest vertical outflow from the bottom of the profile in soils without rock fragments under ponding infiltration condition. Simulation of a more realistic case in a mountain catchment, i.e. infiltration of intensive rainfall, shows that when rainfall intensity is lower than the saturated hydraulic conductivity of the stony soil, the highest outflow is predicted in a soil with the highest stoniness and high initial water content of soil matrix. Relatively low available retention capacity in a stony soil profile and consequently higher unsaturated hydraulic conductivity leads to faster movement of the infiltration front during rainfall.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


Sign in / Sign up

Export Citation Format

Share Document