winter fallow
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 41 (5) ◽  
Author(s):  
Zhanbiao Wang ◽  
Lichao Zhai ◽  
Shiwu Xiong ◽  
Xiaofei Li ◽  
Yingchun Han ◽  
...  

AbstractCotton-winter fallow is the major cropping system of cotton in the Yellow River basin of China, which not only leads to a considerable waste of land and natural resources, but also high greenhouse emissions and a loss of reactive nitrogen. Replacing winter bare fallow in cotton production with February orchid as a cover crop is a new cropping system in this area, but its sustainability is still unknown. Therefore, a field experiment was conducted with two cropping systems (cotton-winter fallow and cotton-February orchid) under four nitrogen application rates (0, 112.5, 168.75, and 225 kg N ha−1). Field observations were incorporated into a life cycle assessment to estimate the carbon footprint, nitrogen footprint, net ecosystem economic benefits, and economic benefits. The estimated carbon footprint per unit of sown area was 43.6–76.1% lower in the cotton-February orchid system than in the cotton-winter fallow system, mainly because of the increase in soil organic carbon. The cotton-February orchid system significantly increased the nitrogen footprint per unit of sown area by 6.7–11.5% under different application rates mainly because of the increase in N2O emissions. The nitrogen application rate significantly impacted the carbon and nitrogen footprints. After accounting for changes in the nitrogen and carbon footprints, the cotton-February orchid system with 168.75 kg N ha−1, which resulted in the highest net ecosystem economic benefits and economic benefits, resulted in a 25.0% reduction in nitrogen fertilizer applied and a 9.5% increase in net ecosystem economic benefits compared with the conventional cotton-winter fallow system and nitrogen fertilizer application rate (225.75 kg N ha−1). Thus, adopting an integrated strategy combining February orchid as a cover crop and a reduced nitrogen fertilizer application contributes to improvements in green and sustainable cotton production systems in the Yellow River basin and other regions with similar ecological conditions.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Bangxing Ye ◽  
Keping Jiang ◽  
Haijun Hou ◽  
Jiaqing Wang

Taoyuan County is a large grain and rapeseed production county. Taking advantage of the resource advantage of soil rich in selenium in Taoyuan County [1], it promotes high-yield cultivation and assembly technology of selenium-rich rice and rapeseed rotation in one-season rice area, optimizing the aggregate structure of the soil, improving the soil ecology and reducing the content of heavy metals in the soil [2], laying the foundation for the continuous increase in agricultural efficiency and farmers' income. Through rice and rapeseed rotation, the overwintering base of rice field borers are reduced, and the incidence of pests and diseases in the coming year is effectively reduced [3]. The implementation of supporting technologies for rice-rapeseed rotation cropping and the widespread promotion of high-quality varieties and planting techniques have improved the level of farmers’ planting. After one season of rice harvesting, most of the farmland is left unused. Using winter fallow fields to develop selenium-enriched rapeseed industry can actually increase the income of farmers.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10573
Author(s):  
Liuxing Xu ◽  
Guojian Tang ◽  
Jing Tian ◽  
Xiaoya Wang ◽  
Jianguo Zhang

In South China, it is common practice for the late rice (Oryza sativa) that is planted during the summer in the paddy fields after harvest to be used for fallowing or to plant winter forage crops. The land is ploughed before early rice planting. Both forage wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum) have relatively high nutritional value, and planting them in winter fallow paddy fields could potentially address food shortages and provide quality forage for livestock. In this study, we examined the effects of no-tillage sowing 5 days before rice harvest (NB5), no-tillage sowing 1 day after rice harvest (NA1), and conventional tillage sowing (CK) 1 day after rice harvest on forage wheat and Italian ryegrass soil properties, dry matter (DM), and crude protein (CP) yields. Soil and plant samples were collected after three months of crop growth. The results showed that the NB5 and NA1 soil bulk density (0-20 cm soil layer) tended to increase when compared to that of the CK field. The NA1 treatment increased the total soil nitrogen and organic matter content. The enzyme activities and total soil porosity in the no-tillage forage wheat and Italian ryegrass fields tended to decrease, while the no-tillage water content and soil capillary porosity tended to increase when compared to that of the CK field. Overall, planting year significantly influenced soil chemical properties (except for total nitrogen) and enzyme activity, but crop type had no significant effect on soil physical-chemical properties (except for capillary moisture capacity) and enzyme activity. Sowing methods had no significant effects on the crop DM and CP yields. The DM yield was affected by the interaction between planting year and sowing methods, or between sowing methods and crop type. No-tillage also increased the number of species and aboveground weed biomass. We concluded that the best sowing method for forage wheat and Italian ryegrass in winter fallow paddy fields was no-tillage sowing following rice harvest.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Jie Li ◽  
Shuai Wang ◽  
Yuanliang Shi ◽  
Lili Zhang ◽  
Zhijie Wu

Cover crop management during the fallow season may play a relevant role in improving crop productivity and soil quality, by increasing nitrogen (N) and soil organic carbon (SOC) accumulation, but has the possibility of increasing greenhouse gas (GHG) emissions from the soil. A year-long consistency experiment was conducted to examine the effects of various winter covering crops on annual nitrous oxide (N2O) together with methane (CH4) emissions in the mono-rice planting system, including direct emissions in the cover crop period and the effects of incorporating these crops on gaseous emissions during the forthcoming rice (Oryza Sativa L.) growing period, to improve the development of winter fallow paddy field with covering crops and to assess rice cultivation patterns. The experiment included three treatments: Chinese milk vetch-rice (Astragalus sinicus L.) with cover crop residue returned (T1), ryegrass (Lolium multiflorum L.)-rice with cover crop residue returned (T2), and rice with winter fallow (CK). Compared with CK, the two winter cover crop treatments significantly increased rice yield, soil organic carbon (SOC) and total nitrogen (TN) by 6.9–14.5%, 0.8–2.1% and 3.4–5.4%, respectively. In all cases, the fluxes of CH4 and N2O could increase with the incorporation of N fertilizer application and cover crop residues. Short-term peaks of these two gas fluxes were monitored after all crop residues were incorporated in the soil preparation period, the early vegetative growth period and the midseason drainage period. The winter cover crop residue application greatly enhanced CH4 and N2O cumulative emissions compared with CK (by 193.6–226.5% and 37.5–43.7%, respectively) during rice growing season and intercropping period. Meanwhile, the mean values of global warming potentials (GWPs) from paddy fields with different cropping crops were T2 > T1 > CK. Considering the advantages of crop productivity together with environmental safety and soil quality, Chinese milk vetch-rice with cover crop residue returned would be the most practicable and sustainable cultivation pattern for the mono-rice cropping systems.


2021 ◽  
Vol 51 (11) ◽  
Author(s):  
Amauri Nelson Beutler ◽  
Alison Machado Fontinelli ◽  
Lucas Santos da Silva ◽  
Leandro Galon ◽  
Matheus Martins Ferreira ◽  
...  

ABSTRACT: Brazil is the largest exporter and second largest producer of soybean grains. Most of this production is from plants grown under no-tillage system (NT). This research evaluated the effect of soil compaction, and different amounts of black oat residues on the soil surface on soybean growth and grain yield in lowland under NT. The experiment was conducted in a completely randomized design with seven treatments and four replications, in the 2016/2017 and 2017/2018 crop seasons. The treatments consisted of: 1) winter fallow without soil compaction (WF); 2) winter fallow with soil compaction (WF-C); 3) black oats and complete removal of surface residues, with soil compaction (0R-C); 4) black oats and removal half of surface residues, with soil compaction (0.5R-C); 5) black oats without surface residue removal, with soil compaction (1R-C); 6) black oats without surface residue removal, plus the residues from treatment 3, with soil compaction (2R-C); 7) black oats without surface residue removal, without soil compaction (1R). When the soybean plants were at the phenological stage R2, they were evaluated nodule, root and shoot dry matter, nitrogen contents, plant height, and grain yield. The soil physical properties were evaluated in the 0.0-0.05, 0.10-0.15 and 0.20-0.25 m layers. The soybean aerial dry matter is > 38% in non-compacted soil in year with soil water excess, regardless of the amount of surface oat straw. In year with small water deficit, soil with more surface oat straw produced > 5% shoot dry matter and > 4% of soybean grain, regardless of compaction. The plant growth and grain yield soybean in lowland varied according to the water conditions, and were affected by soil compaction and amounts of black oats residues on soil surface.


GCdataPR ◽  
2020 ◽  
Author(s):  
Xinliang XU ◽  
Mengyuan ZHAI ◽  
Luo LIU ◽  
Luo LIU

Sign in / Sign up

Export Citation Format

Share Document