scholarly journals On the role of rock fragments and initial soil water content in the potential subsurface runoff formation

2015 ◽  
Vol 63 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Hana Hlaváčiková ◽  
Viliam Novák ◽  
Ladislav Holko

Abstract Stony soils are composed of fractions (rock fragments and fine soil) with different hydrophysical characteristics. Although they are abundant in many catchments, their properties are still not well understood. This article presents basic characteristics (texture, stoniness, saturated hydraulic conductivity, and soil water retention) of stony soils from a mountain catchment located in the highest part of the Carpathian Mountains and summarizes results of water flow modeling through a hypothetical stony soil profile. Numerical simulations indicate the highest vertical outflow from the bottom of the profile in soils without rock fragments under ponding infiltration condition. Simulation of a more realistic case in a mountain catchment, i.e. infiltration of intensive rainfall, shows that when rainfall intensity is lower than the saturated hydraulic conductivity of the stony soil, the highest outflow is predicted in a soil with the highest stoniness and high initial water content of soil matrix. Relatively low available retention capacity in a stony soil profile and consequently higher unsaturated hydraulic conductivity leads to faster movement of the infiltration front during rainfall.

1994 ◽  
Vol 34 (7) ◽  
pp. 1085 ◽  
Author(s):  
L Cai ◽  
SA Prathapar ◽  
HG Beecher

A modelling study was conducted to evaluate water and salt movement within a transitional red-brown earth with saline B horizon soil when such waters are used for ponding in summer. The model was calibrated using previously published experimental data. The calibrated model was used to evaluate the effect of depth to watertable, saturated hydraulic conductivity, and ponding water salinity on infiltration, water and salt movement within the soil profile, and recharge. The study showed that when initial soil water content and the saturated hydraulic conductivity (Ks) are low, infiltrating water will be stored within the soil profile even in the absence of a shallow watertable. Once the soil water content is high, however, recharge will be significant in winter, even if there is no net infiltration at the soil surface. Infiltration rates depend more on Ks than the depth to watertable if it is at, or below, 1.5 m from the soil surface. When Ks is high, recharge under ponding will be higher than that under winter fallow. Subsequent ponding in summer and fallow in winter tend to leach salts from the soil profile, the leaching rate dependent on Ks. During winter fallow, due to net evaporation, salts tend to move upwards and concentrate near the soil surface. In the presence of shallow watertables, leached salts tend to concentrate at, or near, the watertable.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 440
Author(s):  
Nerea Arias ◽  
Iñigo Virto ◽  
Alberto Enrique ◽  
Paloma Bescansa ◽  
Riley Walton ◽  
...  

Stony soils are distributed all over the world. The study of their characteristics has gained importance lately due to their increasing use as agricultural soils. The effect that rock fragments exert on the soil hydraulic properties is difficult to measure in situ, and is usually derived from the fine earth properties. However, the corrections used so far do not seem accurate for all types of stony soils. Our objective was to assess the adequacy of estimating the hydraulic properties of a stony soil from the fine earth ones by correcting the latter by the volume occupied by rock fragments. To do that, we first assessed the validity of different approaches for estimating the hydraulic properties of a stone-free and a stony (40% rock fragments) cylinder prepared with samples from the same silt loam soil. The functions relating to the soil hydraulic properties (θ-h, K-h-θ) were estimated by the Wind method and by inverse estimation, using data from an evaporation experiment where the soil water content and pressure head were measured at different soil depths over time. Results from the evaporation experiment were compared to those obtained by applying the equation that corrects fine earth properties by the rock fragments volume. Wind and the Inverse Estimation methods were successfully applied to estimate soil water content and hydraulic conductivity from the stony soil experiment, except for some uncertainties caused by the limited range of suction in which the experiment was conducted. The application of an equation for adjusting the soil water content at different pressure heads (allowing for defining the soil water retention curve, SWRC), and the unsaturated hydraulic conductivity (K) directly from the stone content was not satisfactory. K values obtained from the measured data were higher than those inferred by the correcting equation in the wet range, but decreased much faster with a decreasing pressure head. The use of this equation did therefore not take into account the effect that the creation of lacunar pores by the presence of rock fragments likely exerts on water flow processes. The use of such correction needs therefore to be revised and new approaches are needed for estimating the hydraulic conductivity in stony soils. In relation to SWRC, a new equation to calculate the water content of a stony soil accounting for the influence of possible lacunar pores is proposed.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1005 ◽  
Author(s):  
Lucia Toková ◽  
Dušan Igaz ◽  
Ján Horák ◽  
Elena Aydin

Due to climate change the productive agricultural sectors have started to face various challenges, such as soil drought. Biochar is studied as a promising soil amendment. We studied the effect of a former biochar application (in 2014) and re-application (in 2018) on bulk density, porosity, saturated hydraulic conductivity, soil water content and selected soil water constants at the experimental site in Dolná Malanta (Slovakia) in 2019. Biochar was applied and re-applied at the rates of 0, 10 and 20 t ha−1. Nitrogen fertilizer was applied annually at application levels N0, N1 and N2. In 2019, these levels were represented by the doses of 0, 108 and 162 kg N ha−1, respectively. We found that biochar applied at 20 t ha−1 without fertilizer significantly reduced bulk density by 12% and increased porosity by 12%. During the dry period, a relative increase in soil water content was observed at all biochar treatments—the largest after re-application of biochar at a dose of 20 t ha−1 at all fertilization levels. The biochar application also significantly increased plant available water. We suppose that change in the soil structure following a biochar amendment was one of the main reasons of our observations.


Soil Research ◽  
1965 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
CW Rose ◽  
WR Stern ◽  
JE Drummond

A theory is presented to calculate hydraulic conductivity from successive measurements of water content profiles for soil in situ. With unsaturated soil, potential gradients are inferred using moisture characteristics, but with saturated soil these gradients must be measured directly. The weight of overburden can affect in situ soil water suction, and a method for determining this effect is given. The theory was applied to a soil profile with marked changes in moisture characteristics and texture, and conductivity was determined for several depths as a function of water content.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2773
Author(s):  
George Kargas ◽  
Konstantinos X. Soulis ◽  
Petros Kerkides

Although soil water redistribution is critical for a number of problems, a rather limited study of this process has been reported up to now and especially as regards the implications of hysteresis on horizontal soil water redistribution after infiltration. To this end, a thorough theoretical and numerical investigation of the redistributed soil water content profiles formed after the cessation of a horizontal infiltration is presented. A number of different initial soil water contents before the initiation of the horizontal infiltration and different infiltration depths were analyzed using the HYDRUS-1D software package considering the appropriate hysteretic wetting and drying curves. The effect of neglecting hysteresis was also investigated for the same conditions. The main wetting and drying boundary curves of the studied porous medium and the hydraulic conductivity at saturation were experimentally determined. The theoretical and numerical analysis indicated that the form of the redistributed soil water content profiles in the presence of hysteresis was similar to the original infiltration profile independently of whether the initial soil water content was taken on the boundary wetting or drying curve and independently of the porous medium type. Specifically, in a relatively short time after the initiation of the redistribution process, the magnitude of the soil matrix head gradient tended to zero due to hysteresis, and this resulted in an insignificant soil water movement, although the soil water content and the hydraulic conductivity values were still high. In addition, the redistribution proceeded at a faster rate than the smallest depth of infiltration water prior to the redistribution, and it was faster during the early stages of the redistribution. Accordingly, hysteresis is important for the simulation of horizontal soil water redistribution as it is, for example, in the case of localized irrigation systems’ design and management.


2021 ◽  
Author(s):  
Miaomiao Yang ◽  
Qinke Yang ◽  
Keli Zhang ◽  
Yuru Li ◽  
Chunmei Wang ◽  
...  

<p>【Objective】Rock fragments (>2mm diameter) are an important component of soil, and its presence has a significant impact on soil erosion and sediment yield. So it is essential to take into full account content of the rock fragments for accurate calculation of soil erodibility factor (K). 【Method】In this paper, based on the data available of the content of rock fragments and classes of soil texture with a resolution of 30 arc-second, influence of the content of rock fragments, including rock fragments in the soil profile (RFP) and gravels on the surface of the soil (SC), on K was assessed at a global scale, using the equation (Brakensiek, 1986) of the relationship between saturated hydraulic conductivity and grade of soil permeability, and the equation (Poesen) of soil erodibility attenuation under a rock fragment cover. 【Result】Results show: (1) The existence of rock fragments in the soil increased K by 4.43% and soil permeability by 5.68% on average in grade and lowering soil saturated hydraulic conductivity by 11.57% by reducing water infiltration rate of the soil and increasing surface runoff. The gravels on the surface of the mountain land and desert/gobi reduced K by 18.7% by protecting the soil from splashing of rain drops and scrubbing of runoff; so once the content of rock fragments in the soil profile and gravels on the surface of the land are taken into account in calculation, soil K may be 5.52% lower; (2)In the areas dominated with the effect of rock fragments, about 62.7% of the global land area, soil K decreased by 0.0091( t•hm<sup>2</sup>•h)•( hm<sup>-2</sup>•MJ<sup>-1</sup>•mm<sup>-1</sup>) on average, while in the area affected mainly by rock fragments in profile, about 31.1% of the global land area, soil K increased by 0.0019( t•hm<sup>2</sup>•h)•( hm<sup>-2</sup>•MJ<sup>-1</sup>•mm<sup>-1</sup>); and (3)The joint effect of rock fragments in profile and gravels on the surface reduced the soil erosion rate by 11.8% in the 6 sample areas. 【Conclusion】 The presence of RFP increases soil K while the presence of SC does reversely. The joint effect of the two leads to decrease in soil erosion. In plotting regional soil erosion maps, it is essential to take both of the two into account so as to improve accuracy of the mapping.</p>


RBRH ◽  
2020 ◽  
Vol 25 ◽  
Author(s):  
Jens Hagenau ◽  
Vander Kaufmann ◽  
Heinz Borg

ABSTRACT TDR-probes are widely used to monitor water content changes in a soil profile (ΔW). Frequently, probes are placed at just three depths. This raises the question how well such a setup can trace the true ΔW. To answer it we used a 2 m deep high precision weighing lysimeter in which TDR-probes are installed horizontally at 20, 60 and 120 cm depth (one per depth). ΔW-data collected by weighing the lysimeter vessel were taken as the true values to which ΔW-data determined with the TDR-probes were compared. We obtained the following results: There is a time delay in the response of the TDR-probes to precipitation, evaporation, transpiration or drainage, because a wetting or drying front must first reach them. Also, the TDR-data are more or less point measurements which are then extrapolated to a larger soil volume. This frequently leads to errors. For these reasons TDR-probes at just three depths cannot provide reliable data on short term (e.g. daily) changes in soil water content due to the above processes. For longer periods (e.g. a week) the data are better, but still not accurate enough for serious scientific studies.


Sign in / Sign up

Export Citation Format

Share Document