scholarly journals Experimental validation in Mediterranean shrub fuels of seven wildland fire rate of spread models

2001 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
S. Sauvagnargues-Lesage ◽  
G. Dusserre ◽  
F. Robert ◽  
G. Dray ◽  
D.W. Pearson

Indexes of forest fire risk are broadcast throughout the Summer months by the French Civil Defense Authority. They are used to guide the deployment of fire prevention resources. However, in some departments, the number of fires during the Winter and Spring months of March–April is equal to or greater than during the Summer months. Some days, conditions are favourable for the propagation of fire (soil moisture content, vegetation in dormancy, relative humidity, ...), but indexes for estimating the risk during this period are not calculated. The objective of this paper is to evaluate various models of fire rate of spread, in order to choose one for Winter and Spring fires. The Fire Service of a department of the French Mediterranean area (the Lozère department) provides the opportunity and the means to conduct validation experiments on prescribed fires. Also, validation data from another department of the French Mediterranean area (Pyrénées Orientales) are presented for the same rate of spread models.

2021 ◽  
Vol 13 (23) ◽  
pp. 4913
Author(s):  
Ronan Paugam ◽  
Martin J. Wooster ◽  
William E. Mell ◽  
Mélanie C. Rochoux ◽  
Jean-Baptiste Filippi ◽  
...  

To pursue the development and validation of coupled fire-atmosphere models, the wildland fire modeling community needs validation data sets with scenarios where fire-induced winds influence fire front behavior, and with high temporal and spatial resolution. Helicopter-borne infrared thermal cameras have the potential to monitor landscape-scale wildland fires at a high resolution during experimental burns. To extract valuable information from those observations, three-step image processing is required: (a) Orthorectification to warp raw images on a fixed coordinate system grid, (b) segmentation to delineate the fire front location out of the orthorectified images, and (c) computation of fire behavior metrics such as the rate of spread from the time-evolving fire front location. This work is dedicated to the first orthorectification step, and presents a series of algorithms that are designed to process handheld helicopter-borne thermal images collected during savannah experimental burns. The novelty in the approach lies on its recursive design, which does not require the presence of fixed ground control points, hence relaxing the constraint on field of view coverage and helping the acquisition of high-frequency observations. For four burns ranging from four to eight hectares, long-wave and mid infra red images were collected at 1 and 3 Hz, respectively, and orthorectified at a high spatial resolution (<1 m) with an absolute accuracy estimated to be lower than 4 m. Subsequent computation of fire radiative power is discussed with comparison to concurrent space-borne measurements.


1998 ◽  
Vol 8 (4) ◽  
pp. 173 ◽  
Author(s):  
V Prosper-Laget ◽  
A Douguedroit ◽  
JP Guinot

An index of forest fire risk has been determined by using the vegetation index NDVI and the surface temperature Ts, computed from NOAA-AVHRR over 21 Mediterranean French forests. Those 2 satellite parameters can be interpreted in terms of soil water deficit and vegetation stress in summer. An inverse linear correlation between their values for each forest pixel of 10 dates in 1990 was used to establish the index which has been divided into 5 equal classes. Those classes correspond with 5 risk classes of forest fire occurrence which were mapped for several forests. Periods and areas in the highest risk class correspond with those where the most important number of fires appeared in that year for the studied forests. A statistical model of the period of highest fire risk has also been constructed for each forest.


2012 ◽  
Vol 21 (4) ◽  
pp. 357 ◽  
Author(s):  
M. A. Cochrane ◽  
C. J. Moran ◽  
M. C. Wimberly ◽  
A. D. Baer ◽  
M. A. Finney ◽  
...  

Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.


Author(s):  
S. K. Tomar ◽  
A. Kaur ◽  
H. K. Dangi ◽  
T. Ghawana ◽  
K. Sarma

One of the major challenge from unplanned growth in the cities is the fire incidents posing a serious threat to life and property. Delhi, the capital city of India, has seen unplanned growth of colonies resulting in a serious concern for the relevant agencies. This paper investigates the relation between potential causes of fire incidents during 2013-2016 in South-West Delhi Division of Delhi Fire Services as part of risk analysis using the data about fire stations & their jurisdictions, incidents of fire, water reservoirs available, landuse and population data along with the divisional & sub-divisional boundaries of South-West Delhi division under Delhi Fire Service. Statistical and Geospatial tools have been used together to perform the risk analysis. The analysis reveals that difference in actual occupancy and defined landuse as a part of unplanned growth of settlements is found to be the main reason behind the major fire incidents. The suggested mitigation measures focus on legal, policy, physical & technological aspects and highlight the need to bring the systemic changes with changing scenario of demographics and infrastructure to accommodate more aspects of ground reality.


Sign in / Sign up

Export Citation Format

Share Document