Variation in local weather explains differences in fire regimes within a Québec south-eastern boreal forest landscape

2010 ◽  
Vol 19 (8) ◽  
pp. 1073 ◽  
Author(s):  
Igor Drobyshev ◽  
Mike D. Flannigan ◽  
Yves Bergeron ◽  
Martin P. Girardin ◽  
Byambagere Suran

Variation in natural disturbance regime within a landscape is important for species population dynamics, because it controls spatial arrangement of sites providing regeneration and survival opportunities. In this study, we examine the differences in fire regime and evaluate possible sources of its variation between the surrounding mainland and the islands of Lake Duparquet (44.5 km2), a typical boreal lake in north-western Quebec, Canada. Dendrochronological reconstructions suggest that fires were frequent and of variable intensity on the islands, whereas fires were less frequent on the adjacent mainland, but were usually large and intense. Islands were significantly drier and warmer than the mainland, and maximum values of Fire Weather Index were significantly higher on the islands during both the early part of the fire season (May–June) and the whole fire season (May–September). The lightning density within the lake perimeter was significantly higher than in the surrounding mainland (0.63 v. 0.48 year–1 km–2 respectively). This pattern was a result of the differences in lightning density during the first half of the lightning season. The study suggests that more fire-prone local weather and higher frequency of lightning strikes could cause a higher frequency of low-intensity fires on the islands, compared with the mainland.

2012 ◽  
Vol 21 (4) ◽  
pp. 328 ◽  
Author(s):  
Steen Magnussen ◽  
Stephen W. Taylor

Year-to-year variation in fire activity in Canada constitutes a key challenge for fire management agencies. Interagency sharing of fire management resources has been ongoing on regional, national and international scales in Canada for several decades to better cope with peaks in resource demand. Inherent stressors on these schemes determined by the fire regimes in constituent jurisdictions are not well known, nor described by averages. We developed a statistical framework to examine the likelihood of regional synchrony of peaks in fire activity at a timescale of 1 week. Year-to-year variations in important fire regime variables and 48 regions in Canada are quantified by a joint distribution and profiled at the Provincial or Territorial level. The fire regime variables capture the timing of the fire season, the average number of fires, area burned, and the timing and extent of annual maxima. The onset of the fire season was strongly correlated with latitude and longitude. Regional synchrony in the timing of the maximum burned area within fire seasons delineates opportunities for and limitations to sharing of fire suppression resources during periods of stress that were quantified in Monte Carlo simulations from the joint distribution.


2013 ◽  
Vol 43 (7) ◽  
pp. 658-668 ◽  
Author(s):  
Hélène M. Marcoux ◽  
Sarah E. Gergel ◽  
Lori D. Daniels

Maps depicting historic fire regimes provide critical baselines for sustainable forest management and wildfire risk assessments. However, given our poor understanding of mixed-severity fire regimes, we asked if there may be considerable errors in fire-regime classification systems used to create landscape-level maps. We used dendrochronological field data (fire scars and tree establishment dates) from 20 randomly selected sites in southern British Columbia to evaluate two classification systems (Natural Disturbance Type (NDT) and Historical Natural Fire Regime (HNFR)) used by managers to map fire regimes. We found evidence of mixed-severity fires at 55% of sites. Each classification system made considerable and contrasting errors predicting mixed-severity regimes (relative to field data), and the discrepancies varied with elevation. The NDT system underrepresented low-to-moderate-severity fires at lower elevations, whereas the HNFR system overpredicted their occurrence at higher elevations. Errors are attributed to underlying assumptions about disturbances in the two classification systems, as well as limitations of the research methods used to estimate fire frequency in mixed-severity regimes (i.e., methods more relevant to high- versus low-severity regimes). Ecological heterogeneity created by mixed-severity regimes potentially influences decisions related to conservation, silviculture, wildfire, and fuel mitigation. Thus, understanding underlying assumptions and errors in mapping fire regimes is critical.


2020 ◽  
Author(s):  
Patrícia S. Silva ◽  
Julia A. Rodrigues ◽  
Filippe L. M. Santos ◽  
Joana Nogueira ◽  
Allan A. Pereira ◽  
...  

<p>Fire is a natural disturbance in the Brazilian savannas, Cerrado, with substantial ecological and economic impacts. Most studies have characterized the fire regime in this biome using climate drivers but neglected the geographical variation of anthropogenic activities. These factors can trigger inappropriate fire-fighting decisions and biodiversity conservation policies. This takes special relevance in fire-prone biomes with recent fire management policies as Cerrado, which have been highly modified over the last decades due to changes in land use and climate. </p><p>Here, we aim to identify how variations in climate and anthropogenic drivers influence burned area (BA) trends at the regional level (microregions) in Cerrado. We evaluated satellite-derived BA (MCD64, collection 6) for 172 microregions from 2001 to 2018 across the entire biome. The Canadian Forest Fire Weather Index (FWI) was used as a proxy of climate using meteorological variables from ECMWF’s ERA5 reanalysis product. The human leverage, considered here as population density (PD) and land use (LU), were derived, respectively, from the annual census of the Brazillian Institute of Geography and Statistics (IBGE) and from a Brazilian platform of annual land use/cover mapping (MapBiomas). Recent BA trends considering the drivers FWI, LU and PD, were estimated using the non-parametric Theil-Sen regression and the modified Mann-Kendall test. </p><p>Results showed BA trends over the last 18 years were significant and spatially contrasted along Cerrado: positive trends were found in the north-eastern region (in particular, the most recent agricultural frontier in Brazil: MATOPIBA) whereas the south-western region showed negative trends. PD showed positive trends in all microregions and, similarly, LU obtained positive trends over most of Cerrado. Positive FWI trends were also found over the central and north-eastern regions and FWI was the driver that explained most of BA variance in Cerrado. LU and PD were found to have much more complex relations with BA. Moreover, regarding the seasonal variability of microregions with positive and negative trends, the former were found to begin earlier in June and last longer, indicating that the overall fire season in Cerrado may be extending. </p><p>The approach presented here allows the exploration of recent trends affecting fires, crucial to inform and support better allocation of resources in fire management under current and future conditions.</p><p>The study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPQ) through grants 305159/2018-6 and 441971/2018-0. P. Silva is funded by Fundação para a Ciência e a Tecnologia (FCT), grant number SFRH/BD/146646/2019.</p>


2019 ◽  
Vol 49 (3) ◽  
pp. 256-269 ◽  
Author(s):  
Chelene C. Hanes ◽  
Xianli Wang ◽  
Piyush Jain ◽  
Marc-André Parisien ◽  
John M. Little ◽  
...  

Contemporary fire regimes of Canadian forests have been well documented based on forest fire records between the late 1950s to 1990s. Due to known limitations of fire datasets, an analysis of changes in fire-regime characteristics could not be easily undertaken. This paper presents fire-regime trends nationally and within two zonation systems, the homogeneous fire-regime zones and ecozones, for two time periods, 1959–2015 and 1980–2015. Nationally, trends in both area burned and number of large fires (≥200 ha) have increased significantly since 1959, which might be due to increases in lightning-caused fires. Human-caused fires, in contrast, have shown a decline. Results suggest that large fires have been getting larger over the last 57 years and that the fire season has been starting approximately one week earlier and ending one week later. At the regional level, trends in fire regimes are variable across the country, with fewer significant trends. Area burned, number of large fires, and lightning-caused fires are increasing in most of western Canada, whereas human-caused fires are either stable or declining throughout the country. Overall, Canadian forests appear to have been engaged in a trajectory towards more active fire regimes over the last half century.


2019 ◽  
Vol 28 (4) ◽  
pp. 282 ◽  
Author(s):  
Jon E. Keeley ◽  
Juli G. Pausas

Fire is a necessary ecosystem process in many biomes and is best viewed as a natural disturbance that is beneficial to ecosystem functioning. However, increasingly, we are seeing human interference in fire regimes that alters the historical range of variability for most fire parameters and results in vegetation shifts. Such perturbations can affect all fire regime parameters. Here, we provide a brief overview of examples where anthropogenically driven changes in fire frequency, fire pattern, fuels consumed and fire intensity constitute perturbations that greatly disrupt natural disturbance cycles and put ecosystems on a different trajectory resulting in type conversion. These changes are not due to fire per se but rather anthropogenic perturbations in the natural disturbance regime.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2016 ◽  
Vol 24 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Chris Stockdale ◽  
Mike Flannigan ◽  
Ellen Macdonald

As our view of disturbances such as wildfire has shifted from prevention to recognizing their ecological necessity, so too forest management has evolved from timber-focused even-aged management to more holistic paradigms like ecosystem-based management. Emulation of natural disturbance (END) is a variant of ecosystem management that recognizes the importance of disturbance for maintaining ecological integrity. For END to be a successful model for forest management we need to describe disturbance regimes and implement management actions that emulate them, in turn achieving our objectives for forest structure and function. We review the different components of fire regimes (cause, frequency, extent, timing, and magnitude), we describe low-, mixed-, and high-severity fire regimes, and we discuss key issues related to describing these regimes. When characterizing fire regimes, different methods and spatial and temporal extents result in wide variation of estimates for different fire regime components. Comparing studies is difficult as few measure the same components; some methods are based on the assumption of a high-severity fire regime and are not suited to detecting mixed- or low-severity regimes, which are critical to END management, as this would affect retention in harvested areas. We outline some difficulties with using fire regimes as coarse filters for forest management, including (i) not fully understanding the interactions between fire and other disturbance agents, (ii) assuming that fire is strictly an exogenous disturbance agent that exerts top-down control of forest structure while ignoring numerous endogenous and bottom-up feedbacks on fire effects, and (iii) assuming by only replicating natural disturbance patterns we preserve ecological processes and vital ecosystem components. Even with a good understanding of a fire regime, we would still be challenged with choosing the temporal and spatial scope for the disturbance regime we are trying to emulate. We cannot yet define forest conditions that will arise from variations in disturbance regime; this then limits our ability to implement management actions that will achieve those conditions. We end by highlighting some important knowledge gaps about fire regimes and how the END model could be strengthened to achieve a more sustainable form of forest management.


2019 ◽  
pp. 31
Author(s):  
Catarina Romão Sequeira ◽  
Cristina Montiel-Molina ◽  
Francisco Castro Rego

The Iberian Peninsula has a long history of fire, as the Central Mountain System, from the Estrela massif in Portugal to the Ayllón massif in Spain, is a major fire-prone area. Despite being part of the same natural region, there are different environmental, political and socio-economic contexts at either end, which might have led to distinct human causes of wildfires and associated fire regimes. The hypothesis for this research lies in the historical long-term relationship between wildfire risks and fire use practices within a context of landscape dynamics. In addition to conducting an analysis of the statistical period, a spatial and temporal multiscale approach was taken by reconstructing the historical record of prestatistical fires and land management history at both ends of the Central Mountain System. The main result is the different structural causes of wildland fires at either end of the Central Mountain System, with human factors being more important than environmental factors in determining the fire regimes in both contexts. The study shows that the development of the fire regime was non-linear in the nineteenth and twentieth centuries, due to broader local human context factors which led to a shift in fire-use practices.


2021 ◽  
Author(s):  
Verónica Dankiewicz ◽  
Matilde M. Rusticucci ◽  
Soledad M. Collazo

<p>Forest fires are a global phenomenon and result from complex interactions between weather and climate conditions, ignition sources, and humans. Understanding these relationships will contribute to the development of management strategies for their mitigation and adaptation. In the context of climate change, fire hazard conditions are expected to increase in many regions of the world due to projected changes in climate, which include an increase in temperatures and the occurrence of more intense droughts. In Argentina, northwestern Patagonia is an area very sensitive to these changes because of its climate, vegetation, the urbanizations highly exposed to fires, and the proximity of two of the largest and oldest National Parks in the country. The main objective of this work is to analyze the possible influence of climate change on some atmospheric patterns related to fire danger in northwestern Argentine Patagonia. The data were obtained from two CMIP5 global climate models CSIRO-Mk3-6-0 and GFDL-ESM2G and the CMIP5 multimodel ensemble, in the historical experiment and two representative concentration pathways: RCP2.6 and RCP8.5. The data used in this study cover the region's fire season (FS), from September to April, and were divided into five periods of 20 years each, a historical period (1986-2005), which was compared with four future periods: near (2021-2040), medium (2041-2060), far (2061-2080) and very far (2081-2100). The statistical distribution of the monthly composite fields of the FS was studied for some of the main fire drivers: sea surface temperature in the region of the index EN3.4 (SST EN3.4), sea level pressure anomalies ​​(SLP), surface air temperature anomalies (TAS), the Antarctic Oscillation Index (AOI) and monthly accumulated precipitation (PR). In addition, the partial correlation coefficient was calculated to determine the independent contribution of each atmospheric variable to the Fire Weather Index (FWI), used as a proxy for the mean FS danger. As a result, we observed that SST EN3.4 is the only one that could indicate a reduction in fire danger in the future, although no variable presented a significant contribution to the FWI with respect to the others. In the RCP8.5 scenario, greater fire danger is projected by the TAS, the PR, the SLP, and relative by the AOI, while in the RCP2.6 scenario, only the TAS shows influence leading to an increase, which would be offset by the opposite influence of SST EN3.4 for the same periods in this scenario. In conclusion, in RCP8.5 it could be assumed that there is a trend towards an increase in fire danger given the influence in this sense of most of the variables analyzed, but not in RCP2.6 where there would be no significant changes.</p>


2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.


Sign in / Sign up

Export Citation Format

Share Document