Fire regime shift linked to increased forest density in a piñon–juniper savanna landscape

2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.

2003 ◽  
Vol 12 (4) ◽  
pp. 309 ◽  
Author(s):  
Robert E. Keane ◽  
Geoffrey J. Cary ◽  
Russell Parsons

Spatial depictions of fire regimes are indispensable to fire management because they portray important characteristics of wildland fire, such as severity, intensity, and pattern, across a landscape that serves as important reference for future treatment activities. However, spatially explicit fire regime maps are difficult and costly to create requiring extensive expertise in fire history sampling, multivariate statistics, remotely sensed image classification, fire behaviour and effects, fuel dynamics, landscape ecology, simulation modelling, and geographical information systems (GIS). This paper first compares three common strategies for predicting fire regimes (classification, empirical, and simulation) using a 51�000�ha landscape in the Selway-Bitterroot Wilderness Area of Montana, USA. Simulation modelling is identified as the best overall strategy with respect to developing temporally deep spatial fire patterns, but it has limitations. To illustrate these problems, we performed three simulation experiments using the LANDSUM spatial model to determine the relative importance of (1) simulation time span; (2) fire frequency parameters; and (3) fire size parameters on the simulation of landscape fire return interval. The model used to simulate fire regimes is also very important, so we compared two spatially explicit landscape fire succession models (LANDSUM and FIRESCAPE) to demonstrate differences between model predictions and limitations of each on a neutral landscape. FIRESCAPE was developed for simulating fire regimes in eucalypt forests of south-eastern Australia. Finally, challenges for future simulation and fire regime research are presented including field data, scale, fire regime variability, map obsolescence, and classification resolution.


2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.


2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wesley Brookes ◽  
Lori D. Daniels ◽  
Kelsey Copes-Gerbitz ◽  
Jennifer N. Baron ◽  
Allan L. Carroll

In the 2017 and 2018, 2.55 million hectares burned across British Columbia, Canada, including unanticipated large and high-severity fires in many dry forests. To transform forest and fire management to achieve resilience to future megafires requires improved understanding historical fire frequency, severity, and spatial patterns. Our dendroecological reconstructions of 35 plots in a 161-hectare study area in a dry Douglas-fir forest revealed historical fires that burned at a wide range of frequencies and severities at both the plot- and study-area scales. The 23 fires between 1619 and 1943 burned at intervals of 10–30 years, primarily at low- to moderate-severity that scarred trees but generated few cohorts. In contrast, current fire-free intervals of 70–180 years exceed historical maximum intervals. Of the six widespread fires from 1790 to 1905, the 1863 fire affected 86% of plots and was moderate in severity with patches of higher severity that generated cohorts at fine scales only. These results indicate the severity of fires varied at fine spatial scales, and offer little support for the common assertion that periodic, high-severity, stand-initiating events were a component of the mixed-severity fire regime in these forest types. Many studies consider fires in the late 1800s relatively severe because they generated new cohorts of trees, and thus, emphasize the importance of high-severity fires in a mixed-severity fire regime. In our study area, the most widespread and severe fire was not a stand-initiating fire. Rather, the post-1863 cohorts persisted due disruption of the fire regime in the twentieth century when land-use shifted from Indigenous fire stewardship and early European settler fires to fire exclusion and suppression. In absence of low- to moderate-severity fires, contemporary forests are dense with closed canopies that are vulnerable to high-severity fire. Future management should reduce forest densities and to restore stand- and landscape-level heterogeneity and increase forest resilience. The timing and size of repeat treatments such as thinning of subcanopy trees and prescribed burning, including Indigenous fire stewardship, can be guided by our refined understanding of the mixed-severity fire regime that was historically dominated by low- to moderate-severity fires in this dry forest ecosystem.


2006 ◽  
Vol 15 (3) ◽  
pp. 433 ◽  
Author(s):  
William L. Baker

Reconstructing fire regimes of the past can provide a valuable frame of reference for understanding the impact of human land uses on contemporary fire and forest structure, but methods for reconstructing past fire regimes are under re-evaluation. In the present article, a common method of characterizing surface fire regimes, using composite fire intervals from fire scars, is shown to significantly underestimate the length of the fire rotation and population mean fire interval in Grand Canyon landscapes where these parameters are known. Also, the evidence and interpretation that past high-severity fire was uncommon in ponderosa pine landscapes in Grand Canyon National Park are challenged. Together, these two concerns mean that an alternative characterization of the fire regime, which has very different implications, cannot be excluded. Management aimed at lowering fire risk, as a means of restoration, does not presently have a sound scientific basis, if it uses the composite fire interval as a measure of the fire regime or is based on fire history research that lacks adequate analysis of past high-severity fire.


2007 ◽  
Vol 37 (9) ◽  
pp. 1605-1614 ◽  
Author(s):  
Russell A. Parsons ◽  
Emily K. Heyerdahl ◽  
Robert E. Keane ◽  
Brigitte Dorner ◽  
Joseph Fall

We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of estimates of Weibull median probability fire intervals (WMPI) to sampling design and to factors that degrade the fire scar record: failure of a tree to record a fire and loss of fire-scarred trees. Accuracy was affected by all of the factors investigated and generally varied with fire regime type. The maximum error was from degradation of the record, primarily because degradation reduced the number of intervals from which WMPI was estimated. The sampling designs were roughly equal in their ability to capture overall WMPI, regardless of fire regime, but the gridded design yielded more accurate estimates of spatial variation in WMPI. Accuracy in WMPI increased with increasing number of points sampled for all fire regimes and sampling designs, but the number of points needed to obtain accurate estimates was greater for fire regimes with complex spatial patterns of fire intervals than for those with relatively homogeneous patterns.


2015 ◽  
Vol 24 (1) ◽  
pp. 59 ◽  
Author(s):  
Emma E. Burgess ◽  
Patrick Moss ◽  
Murray Haseler ◽  
Martine Maron

The post-fire response of vegetation reflects not only a single fire event but is the result of cumulative effects of previous fires in the landscape. For effective ecological fire management there is a need to better understand the relationship between different fire regimes and vegetation structure. The study investigated how different fire regimes affect stand structure and composition in subtropical eucalypt woodlands of central Queensland. We found that fire history category (i.e. specific combinations of time since fire, fire frequency and season of last burn) strongly influenced richness and abundance of species categorised as mid-storey trees and those individuals currently in the mid-level strata. Time since fire and fire frequency appeared to have the strongest influence. A longer time since fire (>4 years since last burn), combined with infrequent fires (<2 fires in 12 year period) appeared to promote a dense mid-storey with the opposite conditions (<4 years since last burn; >2 fires in 12 year period) promoting more-open woodlands. Consideration of these combined fire regime attributes will allow fire managers to plan for a particular range of fire-mediated patches to maintain the desired diversity of vegetation structures.


2019 ◽  
Vol 286 (1909) ◽  
pp. 20191315 ◽  
Author(s):  
Kimberley J. Simpson ◽  
Jill K. Olofsson ◽  
Brad S. Ripley ◽  
Colin P. Osborne

Coping with temporal variation in fire requires plants to have plasticity in traits that promote persistence, but how plastic responses to current conditions are affected by past fire exposure remains unknown. We investigate phenotypic divergence between populations of four resprouting grasses exposed to differing experimental fire regimes (annually burnt or unburnt for greater than 35 years) and test whether divergence persists after plants are grown in a common environment for 1 year. Traits relating to flowering and biomass allocation were measured before plants were experimentally burnt, and their regrowth was tracked. Genetic differentiation between populations was investigated for a subset of individuals. Historic fire frequency influenced traits relating to flowering and below-ground investment. Previously burnt plants produced more inflorescences and invested proportionally more biomass below ground, suggesting a greater capacity for recruitment and resprouting than unburnt individuals. Tiller-scale regrowth rate did not differ between treatments, but prior fire exposure enhanced total regrown biomass in two species. We found no consistent genetic differences between populations suggesting trait differences arose from developmental plasticity. Grass development is influenced by prior fire exposure, independent of current environmental conditions. This priming response to fire, resulting in adaptive trait changes, may produce communities more resistant to future fire regime changes.


2016 ◽  
Author(s):  
Xiayun Xiao ◽  
Simon G. Haberle ◽  
Ji Shen ◽  
Bin Xue ◽  
Sumin Wang

Abstract. A high-resolution, continuous 18.5 ka-long (1 ka=1000 cal yr BP) macroscopic charcoal record from Qinghai Lake in southwestern Yunnan Province, China reveals the postglacial fire frequency and variability history. The results show that three periods with high fire frequency and intensity occurred during the periods 18.5–15.0 ka, 13.0–11.5 ka, and 4.3–~1.0 ka, respectively. This record was compared with the pollen record from the same core, and tentatively correlated with the regional climate proxy records with the aim to separate climate- from human-induced fire activity, and discuss vegetation-fire-climate interactions. The results suggest that fire was mainly controlled by climate before 4.3 ka and by combined action of climate and humans after 4.3 ka. Before 4.3 ka, high fire activity corresponded to cold and dry climatic conditions, while warm and humid climatic conditions brought infrequent and weak fires. Fire was an important disturbance factor and played an important role in forest dynamics around the study area. Vegetation responses to fire before 4.3 ka are not consistent with that after 4.3 ka, suggesting that human influence on vegetation and fire regimes may have become more prevalent after 4.3 ka. The correlations between fire activity and vegetation reveal that evergreen oaks and Alnus are flammable plants. Evergreen oaks are fire-tolerant taxa and Alnus is a fire-adapted taxon. The forests dominated by Lithocarpus/Castanopsis and/or tropical arbors are not easy to ignite, but Lithocarpus/Castanopsis and tropical arbors are fire-sensitive taxa in the study area.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 51 ◽  
Author(s):  
Leys ◽  
Griffin ◽  
Larson ◽  
McLauchlan

(1) Background: Frequent fire, climate variability, and human activities collectively influence savanna ecosystems. The relative role of these three factors likely varies on interannual, decadal, and centennial timescales. Here, we tested if Euro-American activities uncoupled drought and fire frequencies relative to previous centuries in a temperate savanna site. (2) Methods: We combined records of fire frequency from tree ring fire scars and sediment charcoal abundance, and a record of fuel type based on charcoal particle morphometry to reconstruct centennial scale shifts in fire frequency and fuel sources in a savanna ecosystem. We also tested the climate influence on fire occurrence with an independently derived tree-ring reconstruction of drought. We contextualized these data with historical records of human activity. (3) Results: Tree fire scars revealed eight fire events from 1822–1924 CE, followed by localized suppression. Charcoal signals highlight 13 fire episodes from 1696–2001. Fire–climate coupling was not clearly evident both before and after Euro American settlement The dominant fuel source shifted from herbaceous to woody fuel during the early-mid 20th century. (4) Conclusions: Euro-American settlement and landscape fragmentation disrupted the pre-settlement fire regime (fire frequency and fuel sources). Our results highlight the potential for improved insight by synthesizing interpretation of multiple paleofire proxies, especially in fire regimes with mixed fuel sources.


Sign in / Sign up

Export Citation Format

Share Document