regional synchrony
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Colin Bouchard ◽  
Mathieu Buoro ◽  
Clément Lebot ◽  
Stephanie M Carlson

Dispersal and shared environmental conditions can both synchronize the dynamics of local populations, but disentangling their relative influence on dynamics is challenging. We used a Bayesian approach to estimate the synchrony of a metapopulation of Atlantic salmon composed of 18 populations in Brittany, France, including a 24-year time-series of the abundances of juveniles. We estimated the spatial synchrony at a regional and local spatial scale over the study period. We found a strong regional synchrony despite spatio-temporal variability of local synchrony in the abundance of juveniles. We then explored the drivers of synchrony, including environmental conditions (aspects of river flow) and abundance of adult breeders. This revealed that summer low-flow conditions seemed to synchronize the abundances of juveniles more than the synchrony in the abundance of adult breeders, suggesting a Moran effect. Given that drought conditions are expected to become more common with climate change, our work highlights the potentially strong synchronizing effect of summer low-flow on the dynamics of local salmon populations and the benefits of considering synchrony at multiple scales.


2021 ◽  
Author(s):  
Xiaolu Kong ◽  
Ru Kong ◽  
Csaba Orban ◽  
Peng Wang ◽  
shaoshi zhang ◽  
...  

Large-scale biophysical circuit models can provide mechanistic insights into the fundamental micro-scale and macro-scale properties of brain organization that shape complex patterns of spontaneous brain activity. By allowing local synaptic properties to vary across brain regions, recent large-scale circuit models have demonstrated better fit to empirical observations, such as inter-regional synchrony averaged over several minutes, i.e. static functional connectivity (FC). However, most previous models do not capture how inter-regional synchrony patterns vary over timescales of seconds, i.e., time-varying FC dynamics. Here we developed a spatially-heterogeneous large-scale dynamical circuit model that allowed for variation in local circuit properties across the human cortex. We showed that parameterizing local circuit properties with both anatomical and functional gradients was necessary for generating realistic static and dynamical properties of resting-state fMRI activity. Furthermore, empirical and simulated FC dynamics demonstrated remarkably similar sharp transitions in FC patterns, suggesting the existence of multiple attractors. We found that time-varying regional fMRI amplitude tracked multi-stability in FC dynamics. Causal manipulation of the large-scale circuit model suggested that sensory-motor regions were a driver of FC dynamics. Finally, the spatial distribution of sensory-motor drivers matched the principal gradient of gene expression that encompassed certain interneuron classes, suggesting that heterogeneity in excitation-inhibition balance might shape multi-stability in FC dynamics.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 963-969
Author(s):  
Ellen C. Corrick ◽  
Russell N. Drysdale ◽  
John C. Hellstrom ◽  
Emilie Capron ◽  
Sune Olander Rasmussen ◽  
...  

Abrupt climate changes during the last glacial period have been detected in a global array of palaeoclimate records, but our understanding of their absolute timing and regional synchrony is incomplete. Our compilation of 63 published, independently dated speleothem records shows that abrupt warmings in Greenland were associated with synchronous climate changes across the Asian Monsoon, South American Monsoon, and European-Mediterranean regions that occurred within decades. Together with the demonstration of bipolar synchrony in atmospheric response, this provides independent evidence of synchronous high-latitude–to-tropical coupling of climate changes during these abrupt warmings. Our results provide a globally coherent framework with which to validate model simulations of abrupt climate change and to constrain ice-core chronologies.


2019 ◽  
Author(s):  
Chloé Stengel ◽  
Marine Vernet ◽  
Julià L. Amengual ◽  
Antoni Valero-Cabré

AbstractCorrelational evidence in non-human primates has reported evidence of increased frontoparietal high-beta band (22-30 Hz) synchrony during the endogenous allocation of visuospatial attention. But may the engagement of inter-regional synchrony at this specific frequency band provide the causal mechanism by which top-down processes are engaged and they facilitate visual perception in humans? Here we further analyzed electroencephalographic (EEG) signals from a group of healthy human participants who performed a conscious visual detection task, under the influence of brief rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS), with an identical number of pulses and duration, delivered to the right Frontal Eye Field (FEF) prior to the onset of a lateralized near-threshold target. We report increases of inter-regional synchronization in the high-beta band (25-35 Hz) between the electrode closest to the stimulated region (right FEF) and parietal leads, and increases of local inter-trial coherence in the same frequency band over parietal contacts, both driven by rhythmic but not random TMS patterns. Importantly, such increases were accompained by increases of visual sensitivity for left visual targets (contralateral to the stimulation) in the rhythmic but not the random TMS condition at the group level. These outcomes suggest that human high-beta synchrony between right frontal and parietal regions can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual detection. Our study also supports future applications of non-invasive brain stimulation technologies for the manipulation of inter-regional synchrony, which could be administered to improve visual behaviors in healthy humans or neurological patients.


2019 ◽  
Vol 214 ◽  
pp. 45-55 ◽  
Author(s):  
Zachary S. Feiner ◽  
David P. Coulter ◽  
Matthew D. Linn ◽  
Tomas O. Höök

2019 ◽  
Vol 13 (4) ◽  
pp. e0007012 ◽  
Author(s):  
Mikhail Churakov ◽  
Christian J. Villabona-Arenas ◽  
Moritz U. G. Kraemer ◽  
Henrik Salje ◽  
Simon Cauchemez

2019 ◽  
Author(s):  
CM Dillingham ◽  
MM Milczarek ◽  
JC Perry ◽  
BE Frost ◽  
GD Parker ◽  
...  

AbstractDiencephalic amnesia can be as disruptive as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. We used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampo-cortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting important role for the mammillary bodies in the co-ordination of hippocampo-cortical activity.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Xu ◽  
Chang-Dong Wang ◽  
Mao-Jin Liang ◽  
Yue-Xin Cai ◽  
Yi-Qing Zheng

Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method.


2017 ◽  
Vol 47 (1) ◽  
pp. 47-52 ◽  
Author(s):  
C.J. Krebs ◽  
M. O’Donoghue ◽  
Shawn Taylor ◽  
A.J. Kenney ◽  
E.J. Hofer ◽  
...  

White spruce (Picea glauca (Moench) Voss) cone crops were measured at five regional centers in southern and central Yukon for 30 years at one site from 1986 to 2015 and at four other sites during 9 to 11 years to select the best climatic model that uses cues from growing season temperature and rainfall to predict the size of cone crops. We evaluated six climatic models that use summer temperature and rainfall of years t – 1 and t – 2 to predict cone crops in year t. July temperatures provided the best predictors of white spruce cone crops, and no rainfall variable was related to the size of cone crops. We explored three variants of July temperatures: mean temperature, degree-days > 5 °C, and maximum temperatures. For each of these, we used the ΔT model that uses the difference in the July temperature measures of years t – 1 and t – 2. We compared the resulting six models with corrected Akaike’s information criterion (AICc) to determine their relative predictive performance. The best model combined ΔT measures of degree-days > 5 °C and the four highest daily maximum July temperatures with R2 = 0.65. By comparison, the ΔT model involving only mean July temperatures was less successful (R2 = 0.49). There was good regional synchrony (rp = 0.7 to 0.8) in high cone crops over southern and central Yukon during 1986 to 2015.


Sign in / Sign up

Export Citation Format

Share Document