Phylogenetic relationships in the lizard genus Diplodactylus Gray and resurrection of Lucasium Wermuth (Gekkota, Diplodactylidae)

2007 ◽  
Vol 55 (3) ◽  
pp. 197 ◽  
Author(s):  
Paul M. Oliver ◽  
Mark N. Hutchinson ◽  
Steven J. B. Cooper

Diplodactylid geckos offer a model system for investigating the biogeographic history of Australia and adaptive radiations in the arid zone, but there is considerable uncertainty in the systematics of several key genera. We used sequence data from mitochondrial DNA to carry out a comprehensive analysis of phylogenetic relationships of geckos in the genus Diplodactylus. Parsimony and Bayesian analyses were highly concordant and allocated all species to one of two monophyletic clades, one comprising the species placed in the vittatus and conspicillatus species groups, the other comprising species placed in the stenodactylus and steindachneri species groups, plus D. byrnei, formerly in the vittatus group. The distinctness of these two clades is supported by external morphology of the digits, body and limb proportions, and osteology of the bones in the orbital region, and we use these characters to formally define the two clades as genera. We revive and expand the genus Lucasium for D. byrnei, D. steindachneri and the stenodactylus group, with the other species staying in a redefined Diplodactylus. The monotypic Rhynchoedura is distinct from Lucasium, although the Bayesian mtDNA analysis (but not parsimony) gives some support for a sister-group relationship between Lucasium and Rhynchoedura. Molecular data suggest that each of these clades represents a distinct radiation into semiarid and arid terrestrial habitats during the mid-Tertiary, well before the hypothesised Pliocene onset of major aridification.

2011 ◽  
Vol 59 (5) ◽  
pp. 344
Author(s):  
Paul M. Oliver ◽  
Mark N. Hutchinson ◽  
Steven J. B. Cooper

Diplodactylid geckos offer a model system for investigating the biogeographic history of Australia and adaptive radiations in the arid zone, but there is considerable uncertainty in the systematics of several key genera. We used sequence data from mitochondrial DNA to carry out a comprehensive analysis of phylogenetic relationships of geckos in the genus Diplodactylus. Parsimony and Bayesian analyses were highly concordant and allocated all species to one of two monophyletic clades, one comprising the species placed in the vittatus and conspicillatus species groups, the other comprising species placed in the stenodactylus and steindachneri species groups, plus D. byrnei, formerly in the vittatus group. The distinctness of these two clades is supported by external morphology of the digits, body and limb proportions, and osteology of the bones in the orbital region, and we use these characters to formally define the two clades as genera. We revive and expand the genus Lucasium for D. byrnei, D. steindachneri and the stenodactylus group, with the other species staying in a redefined Diplodactylus. The monotypic Rhynchoedura is distinct from Lucasium, although the Bayesian mtDNA analysis (but not parsimony) gives some support for a sister-group relationship between Lucasium and Rhynchoedura. Molecular data suggest that each of these clades represents a distinct radiation into semiarid and arid terrestrial habitats during the mid-Tertiary, well before the hypothesised Pliocene onset of major aridification.


2008 ◽  
Vol 39 (4) ◽  
pp. 407-417 ◽  
Author(s):  
Izabela Sadowska-Woda ◽  
Tobias Malm ◽  
Frédéric Chérot

AbstractThe systematics and phylogeny of the genus Fulvius Stål remains unclear. We present herein the first analysis of the phylogenetic relationships within the genus Fulvius based on DNA sequences. The phylogenetic interrelationships in the genus Fulvius are investigated using partial DNA sequence data from two mitochondrial genes, the 16S ribosomal large subunit and the cytochrome oxidase I (COI). DNA sequences for Fulvius species representing three different subgroups distinguished previously on the base of morphological characters alone are compared to sequences from the closely related genera Rhinocylapidius and Cylapus. The data are analyzed using parsimony and Bayesian inference. The results confirm that on the basis of molecular data we can distinguish the same congruent groups of Fulvius species as using morphological characters, however with inclusion of the specimens of the genus Rhinocylapidius in the bifenestratus-group. Additional studies are needed to clarify the phylogenetic relationships within the tribe Fulviini, as well as within the genus Fulvius and its relation to Rhinocylapidius. However, the results of this study suggest that 16S and COI sequences will be very useful as molecular markers for such studies among these species-groups.


1980 ◽  
Vol 11 (3) ◽  
pp. 313-342 ◽  
Author(s):  
Leif Lyneborg

AbstractNeotabuda Kröber (1931) is a widespread genus of therevids in southern Africa. Its possible monophyly is discussed, and a sister-group relationship with the Palaearctic genus Salentia A. Costa is motivated. Twenty species are recognized, only five of which were described previously. All species are keyed, described and figured. They are arranged in two species-groups, each with two subgroups, and the phylogenetic relationships of these are discussed. The fifteen new species are: incrassaia (Cape Prov.), latifrons (Cape Prov.), longestylata (Cape Prov.), lanigera (Cape Prov.), pilosa (Cape Prov.), subpilosa (Cape Prov.), turneri (Cape Prov.), multisetosa (Cape Prov.), longicornis (Cape Prov.), tomentosa (Namibia), major (Namibia), natalensis (Natal Prov.), diversicornis (Natal Prov.), truncata (Mozambique, Natal Prov.), and nigropilusa (Cape Prov.). The five previously described species are (in their original combination): Thereva anthracina Loew, 1858; Orthactia nigra Kröber, 1912; Pachygenia nitida Kröber, 1912; Actorthia capensis Kröber, 1931; and Neotabuda ater Kröber, 1931. Pachygenia Kröber, 1912 and Neotabuda Kröber, 1931 are placed in new synonymy, but Pachygenia Kröber cannot be used because of its preoccupation by Pachygenia Motschulsky (1874).


Author(s):  
Tom A Williams ◽  
Dominik Schrempf ◽  
Gergely J Szöllősi ◽  
Cymon J Cox ◽  
Peter G Foster ◽  
...  

Abstract There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here we discuss some common issues that can influence the topology of trees obtained when using overly-simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Kurt Galbreath ◽  
Kristina Ragaliauskaite ◽  
Leonas Kontrimavichus ◽  
Arseny Makarikov ◽  
Eric Hoberg

AbstractHymenolepidid cestodes in Myodes glareolus from Lithuania and additional specimens originally attributed to Arostrilepis horrida from the Republic of Belarus are now referred to A. tenuicirrosa. Our study includes the first records of A. tenuicirrosa from the European (western) region of the Palearctic, and contributes to the recognition of A. horrida (sensu lato) as a complex of cryptic species distributed broadly across the Holarctic. Specimens of A. tenuicirrosa from Lithuania were compared to cestodes representing apparently disjunct populations in the eastern Palearctic based on structural characters of adult parasites and molecular sequence data from nuclear (ITS2) and mitochondrial (cytochrome b) genes. Morphological and molecular data revealed low levels of divergence between eastern and western populations. Phylogeographic relationships among populations and host biogeographic history suggests that limited intraspecific diversity within A. tenuicirrosa may reflect a Late Pleistocene transcontinental range expansion from an East Asian point of origin.


2021 ◽  
Vol 95 ◽  
Author(s):  
N.V. Tuyen ◽  
N.T.K. Lan ◽  
P.N. Doanh

Abstract Lungworms of the genus Metastrongylus are parasitic nematodes in the respiratory tract of swine. Although they infect both wild boars and domestic pigs, studies on Metastrongylus infections in wild boars in Europe, the Americas and Africa are numerous, while those in domestic pigs are few. There are several studies analysing the molecular phylogenetic relationships of few individual Metastrongylus species with other nematode taxa, but there are no studies on the phylogenetic relationships of species within the genus Metastrongylus. In Southeast Asia, reports on swine lungworms are extremely scarce and do not include any nucleotide sequence data. Therefore, the aim of the present study is to survey Metastrongylus infection in domestic pigs raised in Dien Bien Province, Northern Vietnam, and to analyse the molecular phylogenetic relationships of Metastrongylus species. Based on morphological and molecular data, we identified two species: Metastrongylus apri and Metastrongylus pudendotectus. The prevalence of the former species was found to be significantly higher than the latter one (24.1% vs. 2.3%). We observed pigs exhibiting a coinfection with the two lungworm species or a single infection with only M. apri. However, we did not observe any pigs being infected with just M. pudendotectus. Vietnamese Metastrongylus specimens showed slight morphological and molecular differences compared to those from other countries. The molecular analyses revealed a close genetic relationship between M. apri and Metastrongylus salmi, while both these species were far distant from M. pudendotectus. The present study highlights the needs for further studies to clarify the morphological features and ecological and phylogenetic relationships of Metastrongylus species at the global scale.


Author(s):  
T.S. Kemp

The vast majority of living and fossil mammals are placentals. Today there are about 4,400 species, which are traditionally organised into 18 Orders, with an extra one if the Pinnipedia are separated from the Carnivora, and a twentieth if the recently extinct Malagasy order Bibymalagasia is recognised as such. There have been many attempts to discover supraordinal groupings from amongst these Orders based on morphological characters, though few proposals have been universally accepted. It is only with the advent of increasingly large sets of molecular sequence data in the last few years that a reasonably robust resolution looks imminent, although these contemporary analyses are remarkably and controversially at odds with the traditional ones. Novacek et al. (1988) summarised the then current situation regarding supraordinal classification of placentals, a time at which morphology was still dominant but molecular data was at the threshold of significance. They accepted a basal group Edentata that combined the Xenarthra of the New World with the Pholidota of the Old, based on a few cranial characters, loss of the anterior teeth, and reduction of the enamel of the remaining ones. This left the rest of the living placentals as a monophyletic group Epitheria, sharing such apparently minor characters as the shape of the stapes bone in the ear. They found very little resolution within the Epitheria, and concluded that there was a polychotomy of no less than nine lineages arranged as a ‘star’ phylogeny. No remnant of the previously recognised taxon Ferungulata, created by Simpson (1945) for the Carnivora plus the ungulate orders Artiodactyla, Perissodactyla, Proboscidea, Hyracoidea, Sirenia, and Tubulidentata remained. On the other hand, three supra ordinal taxa of earlier authors did survive. One was Gregory’s (1910) Archonta, consisting of generally conservative forms and by now composed of the Primates, Dermoptera, Scandentia, and Chiroptera, but excluding the Lipotyphla. The second was Glires, originating with Linnaeus (1758) and widely accepted ever since, for the Rodentia and Lagomorpha; Novacek et al. (1988) tentatively placed the Macroscelidea as the sister-group of the Glires. The third supraordinal taxon recognised was, like Glires, well-established if not universally accepted.


2007 ◽  
Vol 76 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Francesca Benzoni ◽  
Fabrizio Stefani ◽  
Jaroslaw Stolarski ◽  
Michel Pichon ◽  
Guillaume Mitta ◽  
...  

The phylogenetic relationships of the scleractinian genus Psammocora with the other genera traditionally included in the family Siderastreidae and some Fungiidae are assessed based on combined skeletal and molecular data. P. explanulata differs from the other examined congeneric species (P. contigua, P. digitata, P. nierstraszi , P. profundacella, P. superficialis, and P. stellata) in possessing interstomatous septa between adult corallites, costae, and in having continuous buttress-like structures joining septal faces (i.e., fulturae) which typically occur in fungiids. These characters are shared with Coscinaraea wellsi but not with the remainder of the examined siderastreids (the congeneric C. columna, and Anomastraea irregularis, Horastrea indica, Pseudosiderastrea tayamai, Siderastrea savignyana) whose septa are interconnected by typical synapticulae. Most of the examined species form septa with distinct transverse groups of centers of calcification, a biomineralization pattern typical of the Robusta clade. The observations on skeletal structures corroborate the results of the ITS2 and 5.8S molecular phylogeny. C. wellsi and P. explanulata are phylogenetically very close to each other and show closer genetic affinity with the examined Fungiidae (Halomitra pileus, Herpolitha limax, Fungia paumotensis, and Podabacia crustacea) than with the other species in the genera Psammocora and Coscinaraea, or with any other siderastreid. Our results show that neither Psammocora nor Coscinaraea are monophyletic genera. The high genetic distances between the species of Siderastreidae, especially between Pseudosiderastrea tayamai and Siderastrea savignyana on one side and the other genera on the other, suggest a deep divergence in the phylogenetic structure of the family.


2001 ◽  
Vol 15 (3) ◽  
pp. 353 ◽  
Author(s):  
Brian E. Heterick

The Australian ants of the genus Monomorium are revised. Fifty-nine species are recognised. Of these, 41 are described as new: Monomorium aithoderum, M. albipes, M. anderseni, M. anthracinum, M. arenarium, M. bifidum, M. bihamatum, M. brachythrix, M. burchera, M. capito, M. carinatum, M. castaneum, M. crinitum, M. decuria, M. disetigerum, M. draculai, M. durokoppinense, M. elegantulum, M. eremophilum, M. euryodon, M. flavonigrum, M. lacunosum, M. legulus, M. longinode, M. macarthuri, M. majeri, M. megalops, M. micula, M. nanum, M. nightcapense, M. nigriceps, M. parantarcticum, M. petiolatum, M. pubescens, M. ravenshoense, M. rufonigrum, M. shattucki, M. silaceum, M. stictonotum, M. striatifrons, and M. xantheklemma. Thirteen species pass into synonymy: M. armstrongi with M. whitei, M. broomense and M. ilia with M. laeve, M. donisthorpeiand M. fraterculus with M. fieldi, M. flavipes and M. insularis with M. leae, M. foreli with M. sordidum, M. howense with M. tambourinense, M. macareaveyi with M. bicorne, M. sanguinolentum with M. rubriceps, M. subapterum with M. rothsteini, and M. turneri withM. gilberti. Sixteen infraspecific forms are also synonymised: M. kilianii obscurelluminto M. kilianii, M. laeve nigriusand M. laeve fraterculus into M. fieldi, M. ilia lamingtonensisinto M. laeve, M. rothsteini humilior, M. rothsteini leda, M. rothsteini doddi and M. subapterum bogischi into M. rothsteini, M. rothsteini squamigena, M. rothsteini tostum and M. sordidum nigriventris into M. sordidum, M. fraterculus barretti and M. sydneyense nigella into M. sydneyense, M. gilberti mediorubra into M. gilberti, and M. rubriceps cinctumand M. rubriceps rubrum into M. rubriceps. Seventeen species and one subspecies are unchanged. Monomorium kiliani reverts to M. kilianii, M. kilianii tambourinenseis raised to species status, M. occidaneus is here treated as a species inquirenda, and M. flavigaster is removed from the genus Monomorium. Since the generic status of the latter taxon is uncertain, M. flavigaster is here regarded as incertae sedis. The supposedly extralimitalMonomorium talpa is synonymised under Monomorium australicum. At a higher taxonomic level the South American genus Antichthonidris is synonymised under Monomorium. Seven species-groups are proposed for the Australian fauna, (the bicorne-, falcatum-, insolescens-, kilianii-, longinode-, monomorium-, and rubriceps-groups). A cladistic analysis was undertaken of species for which all castes were examined (identifiable males and/or queens were lacking for all members of the falcatum-, insolescens- and longinode-groups). In all, fifteen species of Australian Monomorium were examined (M. bicorne, M. whitei, M. striatifrons and M. rufonigrum from the bicorne-group, M. crinitumand M. kilianii from the kilianii-group, M. fieldi, M. laeve, M. rothsteini, M. sordidum and M. sydneyense from the monomorium-group, and M. centrale, M. leae, M. euryodon and M. rubriceps from the rubriceps-group), together with Monomorium antarcticum(from New Zealand) and the Neotropical Antichthonidris denticulatus. The taxon used for the outgroup was the Neotropical ant Megalomyrmex modestus. Using the PAUP program, 37 characters for worker, queen and male castes were analysed. The clade incorporating the tiny generalists (M. fieldi, M. laeve, M. sordidum, and M. sydneyense), together with M. rothsteini, was found to be the clade most strongly supported as a monophyletic grouping. In this analysis M. euryodon was the sister taxon to the above clade. These ants were shown on this analysis to share a common ancestor with the other members of the rubriceps-group, with M. antarcticum and A. denticulatus, and with thekilianii-group. The relationships between these latter four sets of species were left unresolved, except that M. crinitum was shown to be the sister taxon to M. kilianii. The large, arid zone species in thebicorne-group were also shown as ancestral to the other Australian Monomorium. A key is provided to enable researchers to identify the workers of all Australian Monomorium, as well as extralimital species established in Australia.


Zootaxa ◽  
2005 ◽  
Vol 891 (1) ◽  
pp. 1 ◽  
Author(s):  
Magdalena Szarowska ◽  
Andrzej Falniowski ◽  
FRANK Riedel ◽  
Thomas Wilke

The phylogenetic position of the subfamily Pyrgulinae within the superfamily Rissooidea has been discussed very controversially. Different data sets not only led to different evolutionary scenarios but also to different systematic classifications of the taxon. The present study uses detailed anatomical data for two pyrgulinid taxa, the type species of the subfamily, Pyrgula annulata (Linnaeus, 1767), and the type species of the little known genus Dianella, D. thiesseana (Kobelt, 1878), as well as DNA sequencing data of three gene fragments from representatives of eight rissooidean families to A) infer the phylogenetic position of Pyrgulinae with emphasis on its relationships within the family Hydrobiidae, B) to study the degree of concordance between anatomyand DNAbased phylogenies and C) to trace the evolution of anatomical characters along a multi-gene molecular phylogeny to find the anatomical characters that might be informative for future cladistic analyses. Both anatomical and molecular data sets indicate either a very close or even sister-group relationship of Pyrgulinae and Hydrobiinae. However, there are major conflicts between the two data sets on and above the family level. Notably, Hydrobiidae is not monophyletic in the anatomical analysis. The reconstruction of anatomical character evolution indicates that many of the characters on which the European hydrobioid taxonomy is primarily based upon are problematic. The inability to clearly separate some hydrobiids from other distinct families based on those characters might explain why until only a few years ago, "Hydrobiidae" was a collecting box for numerous rissooidean taxa (mostly species with shells small and lacking any characteristic features). The present study not only stresses the need for comprehensive molecular studies of rissooidean taxa, it also demonstrates that much of the problems surrounding anatomical analyses in rissooidean taxa are due to the lack of comprehensive data for many representatives. In order to aid future comparativeanatomical studies and a better understanding of character evolution in the species-rich family Hydrobiidae, detailed anatomical descriptions for P. annulata and D. thiesseana are provided.Key words: Pyrgulinae, Pyrgula, Dianella, Hydrobiidae, phylogeny, DNA, anatomy, Greece


Sign in / Sign up

Export Citation Format

Share Document