Metabolic Physiology of Euthermic and Torpid Honey Possums, Tarsipes-Rostratus

1989 ◽  
Vol 37 (6) ◽  
pp. 685 ◽  
Author(s):  
PC Withers ◽  
KC Richardson ◽  
RD Wooller

Euthermic honey possums have a higher body temperature (Tb), basal metabolic rate and wet thermal conductance than other marsupials of similar mass. Honey possums enter torpor when cold-stressed and deprived of food. The pattern of decline in body temperature and oxygen consumption during torpor generally resembles that of other heterothermic endotherms. The duration of torpor bouts in honey possums was about 10 h; torpor bouts longer than one day were not observed. The Tb declined during torpor to within 1-2�C of ambient temperature (Ta>5�C) and oxygen consumption rate declined dramatically. The minimal body temperature (Tb,min) measured for torpid honey possums was about 5�C, because Tb was regulated at about 5�C by honey possums torpid at Ta<5�C, by an elevation of oxygen consumption rate. Previous studies of small marsupials have delineated two basic patterns of torpor: (1) shallow (Tb,min>10-15�C) and short-term torpor cycles (e.g. in dasyurids); (2) deep (Tb,min<10�C) and multi-day torpor cycles (e.g. in burramyids). Honey possums appear to have a third pattern of deep (Tb,min=5�C) but short-term torpor. The ecological reasons for this pattern of deep torpor and the apparent absence of multi-day torpor in honey possums may be related to their nectarivorous diet and lack of extensive fat stores.

2012 ◽  
Vol 303 (7) ◽  
pp. E908-E916 ◽  
Author(s):  
Jiarong Liu ◽  
Wei Zhang ◽  
Gin C. Chuang ◽  
Helliner S. Hill ◽  
Ling Tian ◽  
...  

We have suggested previously that Tribbles homolog 3 (TRIB3), a negative regulator of Akt activity in insulin-sensitive tissues, could mediate glucose-induced insulin resistance in muscle under conditions of chronic hyperglycemia (Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, Walton RG, Martin M, Garvey WT. Am J Physiol Endocrinol Metab 298: E565–E576, 2010). In the current study, we have assessed short-term physiological regulation of TRIB3 in skeletal muscle and adipose tissues by nutrient excess and fasting as well as TRIB3's ability to modulate glucose transport and mitochondrial oxidation. In Sprague-Dawley rats, we found that short-term fasting enhanced insulin sensitivity concomitantly with decrements in TRIB3 mRNA (66%, P < 0.05) and protein (81%, P < 0.05) in muscle and increments in TRIB3 mRNA (96%, P < 0.05) and protein (∼10-fold, P < 0.05) in adipose tissue compared with nonfasted controls. On the other hand, rats fed a Western diet for 7 days became insulin resistant concomitantly with increments in TRIB3 mRNA (155%, P < 0.05) and protein (69%, P = 0.0567) in muscle and a decrease in the mRNA (76%, P < 0.05) and protein (70%, P < 0.05) in adipose. In glucose transport and mitochondria oxidation studies using skeletal muscle cells, we found that stable TRIB3 overexpression impaired insulin-stimulated glucose uptake without affecting basal glucose transport and increased both basal glucose oxidation and the maximal uncoupled oxygen consumption rate. With stable knockdown of TRIB3, basal and insulin-stimulated glucose transport rates were increased, whereas basal glucose oxidation and the maximal uncoupled oxygen consumption rate were decreased. In conclusion, TRIB3 impacts glucose uptake and oxidation oppositely in muscle and fat according to levels of nutrient availability. The above data for the first time implicate TRIB3 as a potent physiological regulator of insulin sensitivity and mitochondrial glucose oxidation under conditions of nutrient deprivation and excess.


Author(s):  
Grażyna Mazurkiewicz-Boroń ◽  
Teresa Bednarz ◽  
Elżbieta Wilk-Woźniak

Microbial efficiency in a meromictic reservoirIndices of microbial efficiency (expressed as oxygen consumption and carbon dioxide release) were determined in the water column of the meromictic Piaseczno Reservoir (in an opencast sulphur mine), which is rich in sulphur compounds. Phytoplankton abundances were low in both the mixolimnion (up to 15 m depth) and monimolimnion (below 15 m depth). In summer and winter, carbon dioxide release was 3-fold and 5-fold higher, respectively, in the monimolimnion than in the mixolimnion. Laboratory enrichments of the sulphur substrate of the water resulted in a decrease in oxygen consumption rate of by about 42% in mixolimnion samples, and in the carbon dioxide release rate by about 69% in monimolimnion samples. Water temperature, pH and bivalent ion contents were of major importance in shaping the microbial metabolic efficiency in the mixolimnion, whilst in the monimolimnion these relationships were not evident.


2021 ◽  
Vol 22 (9) ◽  
pp. 4366
Author(s):  
Rebecca L. Paszkiewicz ◽  
Richard N. Bergman ◽  
Roberta S. Santos ◽  
Aaron P. Frank ◽  
Orison O. Woolcott ◽  
...  

The authors wish to make the following corrections to this paper [...]


2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


Sign in / Sign up

Export Citation Format

Share Document