scholarly journals Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase

2007 ◽  
Vol 104 (18) ◽  
pp. 7699-7704 ◽  
Author(s):  
Andreas Friebe ◽  
Evanthia Mergia ◽  
Oliver Dangel ◽  
Alexander Lange ◽  
Doris Koesling

The signaling molecule nitric oxide (NO), first described as endothelium-derived relaxing factor (EDRF), acts as physiological activator of NO-sensitive guanylyl cyclase (NO-GC) in the cardiovascular, gastrointestinal, and nervous systems. Besides NO-GC, other NO targets have been proposed; however, their particular contribution still remains unclear. Here, we generated mice deficient for the β1 subunit of NO-GC, which resulted in complete loss of the enzyme. GC-KO mice have a life span of 3–4 weeks but then die because of intestinal dysmotility; however, they can be rescued by feeding them a fiber-free diet. Apparently, NO-GC is absolutely vital for the maintenance of normal peristalsis of the gut. GC-KO mice show a pronounced increase in blood pressure, underlining the importance of NO in the regulation of smooth muscle tone in vivo. The lack of an NO effect on aortic relaxation and platelet aggregation confirms NO-GC as the only NO target regulating these two functions, excluding cGMP-independent mechanisms. Our knockout model completely disrupts the NO/cGMP signaling cascade and provides evidence for the unique role of NO-GC as NO receptor.

2004 ◽  
Vol 286 (6) ◽  
pp. H2296-H2304 ◽  
Author(s):  
Yasuhiro Nishikawa ◽  
David W. Stepp ◽  
Daphne Merkus ◽  
Deron Jones ◽  
William M. Chilian

The heart constitutively expresses heme oxygenase (HO)-2, which catabolizes heme-containing proteins to produce biliverdin and carbon monoxide (CO). The heart also contains many possible substrates for HO-2 such as heme groups of myoglobin and cytochrome P-450s, which potentially could be metabolized into CO. As a result of observations that CO activates guanylyl cyclase and induces vascular relaxation and that HO appears to confer protection from ischemic injury, we hypothesized that the HO-CO pathway is involved in ischemic vasodilation in the coronary microcirculation. Responses of epicardial coronary arterioles to ischemia (perfusion pressure ∼40 mmHg; flow velocity decreased by ∼50%; d L/d t reduced by ∼60%) were measured using stroboscopic fluorescence microangiography in 34 open-chest anesthetized dogs. Ischemia caused vasodilation of coronary arterioles by 36 ± 6%. Administration of NG-monomethyl-l-arginine (l-NMMA, 3 μmol·kg−1·min−1 intracoronary), indomethacin (10 mg/kg iv), and K+ (60 mM, epicardial suffusion) to prevent the actions of nitric oxide, prostaglandins, and hyperpolarizing factors, respectively, partially inhibited dilation during ischemia (36 ± 6 vs. 15 ± 4%; P < 0.05). The residual vasodilation during ischemia after antagonist administration was inhibited by tin mesoporphyrin IX (SnMP, 10 mg/kg iv), which is an inhibitor of HO (15 ± 4 vs. 7 ± 2%; P < 0.05 vs. before SnMP). The guanylyl cyclase inhibitor 1 H-[1,2,4]oxadiazole[4,3- a]quinoxalin-1-one (10−5 M, epicardial suffusion) also inhibited vasodilation during ischemia in the presence of l-NMMA with indomethacin and KCl. Moreover, administration of heme-l-arginate, which is a substrate for HO, produced dilation after ischemia but not after control conditions. We conclude that during myocardial ischemia, HO-2 activation can produce cGMP-mediated vasodilation presumably via the production of CO. This vasodilatory pathway appears to play a backup role and is activated only when other mechanisms of vasodilation during ischemia are exhausted.


2004 ◽  
Vol 15 (9) ◽  
pp. 4023-4030 ◽  
Author(s):  
Florian Mullershausen ◽  
Michael Russwurm ◽  
Doris Koesling ◽  
Andreas Friebe

Most effects of the messenger molecule nitric oxide (NO) are mediated by cGMP, which is formed by NO-sensitive guanylyl cyclase (GC) and degraded by phosphodiesterases (PDEs). In platelets, NO elicits a spike-like cGMP response and causes a sustained desensitization. Both characteristics have been attributed to PDE5 activation caused by cGMP binding to its regulatory GAF domain. Activation is paralleled by phosphorylation whose precise function remains unknown. Here, we report reconstitution of all features of the NO-induced cGMP response in human embryonic kidney cells by coexpressing NO-sensitive GC and PDE5. The spike-like cGMP response was blunted when PDE5 phosphorylation was enhanced by additional overexpression of cGMP-dependent protein kinase. Analysis of PDE5 activation in vitro revealed a discrepancy between the cGMP concentrations required for activation (micromolar) and reversal of activation (nanomolar), indicating the conversion of a low-affinity state to a high-affinity state upon binding of cGMP. Phosphorylation even increased the high apparent affinity enabling PDE5 activation to persist at extremely low cGMP concentrations. Our data suggest that the spike-like shape and the desensitization of the cGMP response are potentially inherent to every GC- and PDE5-expressing cell. Phosphorylation of PDE5 seems to act as memory switch for activation leading to long-term desensitization of the signaling pathway.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2014 ◽  
Vol 29 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Lisa L. Dupont ◽  
Constantinos Glynos ◽  
Ken R. Bracke ◽  
Peter Brouckaert ◽  
Guy G. Brusselle

Sign in / Sign up

Export Citation Format

Share Document