scholarly journals Single-molecule mass spectrometry in solution using a solitary nanopore

2007 ◽  
Vol 104 (20) ◽  
pp. 8207-8211 ◽  
Author(s):  
J. W. F. Robertson ◽  
C. G. Rodrigues ◽  
V. M. Stanford ◽  
K. A. Rubinson ◽  
O. V. Krasilnikov ◽  
...  
2021 ◽  
Vol 11 (22) ◽  
pp. 11038
Author(s):  
Yudai Tsuji ◽  
Shinichi Yamaguchi ◽  
Tomoyuki Nakamura ◽  
Masaya Ikegawa

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is increasingly used in a broad range of research due to its ability to visualize the spatial distribution of metabolites in vivo. Here, we have developed a method, named thoracic Mass Spectrometry Imaging (tMSI), as a standard protocol of molecular imaging of whole-animal sectioning in various settings of mice in vivo. Further application of the strategy that involved the systemic administration of dexamethasone (DEX) in mice, enabled a dynamic shift in the energy status of multiple thoracic organs to be visualized, based on tMSI data of purine and pyrimidine metabolites. Furthermore, with the introduction of uniform manifold approximation and projection (UMAP) for tMSI data, metabolic profiles normally localized in the cortex and cortico-medullary junction (CMJ) of the thymus were drastically shifted as minor profiles into the medulla of DEX-treated thymus. As a massive apoptotic cell death in the thymic cortex was noticeable, a single molecule, which was upregulated in the cortex of the thymus, enabled us to predict ongoing immunosuppression by in vivo DEX-administration.


2010 ◽  
Vol 107 (27) ◽  
pp. 12080-12085 ◽  
Author(s):  
J. E. Reiner ◽  
J. J. Kasianowicz ◽  
B. J. Nablo ◽  
J. W. F. Robertson

2018 ◽  
Vol 373 (1749) ◽  
pp. 20170176 ◽  
Author(s):  
Ranit Gruber ◽  
Amnon Horovitz

Advances in native mass spectrometry and single-molecule techniques have made it possible in recent years to determine the values of successive ligand binding constants for large multi-subunit proteins. Given these values, it is possible to distinguish between different allosteric mechanisms and, thus, obtain insights into how various bio-molecular machines work. Here, we describe for ring-shaped homo-oligomers, in particular, how the relationship between the values of successive ligand binding constants is diagnostic for concerted, sequential and probabilistic allosteric mechanisms. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.


2014 ◽  
Vol 86 (22) ◽  
pp. 11077-11085 ◽  
Author(s):  
Christopher E. Angevine ◽  
Amy E. Chavis ◽  
Nuwan Kothalawala ◽  
Amala Dass ◽  
Joseph E. Reiner

2020 ◽  
Author(s):  
Deepti Karandur ◽  
Moitrayee Bhattacharyya ◽  
Beryl Xia ◽  
Young Kwang Lee ◽  
Serena Muratcioglu ◽  
...  

AbstractCa2+/calmodulin dependent protein kinase II (CaMKII) is a dodecameric or tetradecameric enzyme with crucial roles in neuronal signaling and cardiac function. Activation of CaMKII is reported to trigger the exchange of subunits between holoenzymes, which can increase spread of the active state. Using mass spectrometry, we now show that peptides derived from the sequence of the CaMKII-α regulatory segment can bind to the CaMKII-α hub assembly and break it into smaller oligomers. Molecular dynamics simulations show that the regulatory segments can dock spontaneously at the interface between hub subunits, trapping large fluctuations in hub structure. Single-molecule fluorescence intensity analysis of human CaMKII-α isolated from mammalian cells shows that activation of CaMKII-α results in the destabilization of the holoenzyme. Our results show how the release of the regulatory segment by activation and phosphorylation could allow it to destabilize the hub, producing smaller CaMKII assemblies that can reassemble to form new holoenzymes.


2019 ◽  
Vol 20 (20) ◽  
pp. 5181 ◽  
Author(s):  
Roberta Corti ◽  
Claudia A. Marrano ◽  
Domenico Salerno ◽  
Stefania Brocca ◽  
Antonino Natalello ◽  
...  

Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of α-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric α-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15205-e15205
Author(s):  
Qimin Quan ◽  
John Geanacopoulos ◽  
Joshua Ritchey ◽  
Mark Clenow ◽  
Joe Wilkinson ◽  
...  

e15205 Background: Existing drug development programs are represented by only a few hundred protein targets. A large subset of the ~20,000 proteins encoded by the human genome remain undiscovered. Proteome-wide “druggability” screening may lead to new targets for therapeutics. Methods: The NanoMosaic platform is a digital immunoassay technology that achieves sub-pg/ml level sensitivity, whole-proteome level multiplexing capability, and 7 logs of dynamic range. The platform overcomes the sensitivity and dynamic range limitations of traditional protein arrays and mass spectrometry. Results: The NanoMosaic technology is powered by silicon nanoneedle biosensors that are densely integrated on a plate and manufactured with CMOS-compatible nanofabrication processes. Each nanoneedle is a label-free biosensor, functionalized with capture antibodies. Its scattering spectrum changes when an antigen binds to its surface. Each analyte specific sensing area consists a total of ~23k nanoneedles divided into a digital region (~20k nanoneedles) and an analog region (~3k nanoneedles). The digital nanoneedles provide the single molecule sensitivity. Therefore, at ultra-low concentration when antigens that are captured by the nanoneedles follow Poisson statistics, the number of antigens can be quantitated by counting the presence or absence of color changes of individual nanoneedles in a binary fashion. As the protein concentrations increase, the binding event counts increase accordingly and achieve saturation when all nanoneedles capture more than one protein. Above the digital saturation concentration, an adjacent section of analog nanoneedles perform quantitative analysis based on the level of color change, thus providing a wider dynamic range up to 1ug/ml. Ultrahigh level multiplex can be achieved by parallelizing the detection in a microarray format without loss of the sensitivity and dynamic range. A 20,000-plex proteome-wide study can be achieved with a total of 5 billion nanoneedles on a ~70mm by 70mm chip. Conclusions: In conclusion, proteome-wide biomarker quantification and target discovery can be performed on the NanoMosaic platform at higher sensitivity, wider dynamic range, lower cost and higher throughput than is currently possible by mass spectrometry or traditional immunoassays.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15019-e15019
Author(s):  
Qimin Quan ◽  
Joe Wilkinson ◽  
Joshua Ritchey ◽  
Alaina Kaiser ◽  
John Geanacopoulos ◽  
...  

e15019 Background: Liquid biopsy has evolved to be an important method complementary to tissue biopsy. It is not only non-invasive, but also has the potential to detect cancer in its earliest stages and monitor patients in remission. The integration of proteomics into liquid biopsy may transform the molecular diagnostics of cancer and accelerate basic and clinical oncology research. A recent study showed that adding just 8 protein biomarkers to a panel of circulating DNA biomarkers increased the diagnostic accuracy up to 98% sensitivity and 99% specificity. Proteomics also bridges the gaps of functional information lost due to post-transcriptional and post-translational modifications in the genomic approach. However, the proteogenomic approach normally requires the use of multiple different assay technologies and laboratory workflows, including mass spectrometry. Methods: NanoMosaic’s Tessie platform employs a densely integrated nanoneedle sensor array (thus named MosaicNeedles) which can be used to detect both nucleic acids and proteins in a single assay process with reduced workflow complexity, without the need for mass spectrometry. Results: The NanoMosaic platform is a label-free, digital, single molecule counting technology using nanoneedles. It achieves sub-pg/ml (̃fM) level sensitivity with 7 logs of dynamic range. An array of nanoneedles is densely integrated and manufactured with CMOS-compatible nanofabrication processes. Each nanoneedle is a single molecule biosensor that is functionalized with capture probes. The capture probe can be either an antibody for protein detection or an oligonucleotide with a specific target sequence to a DNA fragment, mRNA, or miRNA of interest. The scattering spectrum of each nanoneedle changes when an analyte binds to its surface. At low abundance, analytes that are captured can be quantitated by counting the presence or absence of a color change on each individual nanoneedle in a binary fashion. As an analyte concentration increases the binding events increase accordingly and achieve saturation. In this range, an analog analysis on the spectrum shift will be performed, thus providing a wider dynamic range, up to 7 logs. Ultrahigh level multiplex can be achieved by parallelizing each analyte specific sensing area without loss of sensitivity or dynamic range. A 10,000-plex study can be achieved with a total of 2.5 billion nanoneedles on a 50mm by 50mm consumable. In this consumable, a 2,000-plex proteome and 8,000 cell-free DNA fragments can be detected. Conclusions: In conclusion, a full proteogenomic quantification can be performed on the NanoMosaic platform in one reaction, with higher sensitivity, lower cost and higher throughput than is currently possible by traditional methods. In addition, the high-plexibility of the NanoMosaic platform allows the discovery of new biomarkers across the whole proteome without the need for mass spectrometry.


Sign in / Sign up

Export Citation Format

Share Document