scholarly journals A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

2007 ◽  
Vol 104 (18) ◽  
pp. 7682-7687 ◽  
Author(s):  
Matthew R. Whorton ◽  
Michael P. Bokoch ◽  
Søren G. F. Rasmussen ◽  
Bo Huang ◽  
Richard N. Zare ◽  
...  

G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the β2-adrenergic receptor (β2AR), can be incorporated into a reconstituted high-density lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single β2AR is incorporated per rHDL particle. The monomeric β2AR efficiently activates Gs and displays GTP-sensitive allosteric ligand-binding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.

Author(s):  
Rinshi S. Kasai ◽  
Takahiro K. Fujiwara ◽  
Akihiro Kusumi

G-protein-coupled receptors (GPCRs) constitute the largest family of integral membrane proteins in the human genome and are responsible for various important signaling pathways for vision, olfaction, gustation, emotion, cell migration, etc. A distinct feature of the GPCR-family proteins is that many GPCRs, including the prototypical GPCR, β2-adrenergic receptor (β2AR), elicit low levels of basal constitutive signals without agonist stimulation, which function in normal development and various diseases1–3. However, how the basal signals are induced is hardly known. Another general distinctive feature of GPCRs is to form metastable homo-dimers, with lifetimes on the order of 0.1 s, even in the resting state. Here, our single-molecule-based quantification4 determined the dissociation constant of β2AR homo-dimers in the PM (1.6 ± 0.29 copies/μm2) and their lifetimes (83.2 ± 6.4 ms), and furthermore found that, in the resting state, trimeric G-proteins were recruited to both β2AR monomers and homo-dimers. Importantly, inverse agonists, which suppress the GPCR’s basal constitutive activity, specifically blocked the G-protein recruitment to GPCR homo-dimers, without affecting that to monomers. These results indicate that the G-proteins recruited to transient GPCR homo-dimers are responsible for inducing their basic constitutive signals. These results suggest novel drug development strategies to enhance or suppress GPCR homo-dimer formation.


2009 ◽  
Vol 101 (04) ◽  
pp. 665-673 ◽  
Author(s):  
Lina Badimon ◽  
Cristina Rodríguez ◽  
María González-Díez ◽  
José Martínez-González

SummarySphingosine-1-phosphate (S1P) is a bioactive lipid generated in the intracellular membranes from the metabolism of sphingomyelin. Once secreted/exported by cells of haematopoietic origin and vascular cells S1P interacts with plasma proteins and accumulates in high-density lipoprotein (HDL). Growing evidence indicates that HDL-associated S1P is responsible for the beneficial effects of these lipoproteins on vasorelaxation, cell survival, cell adhesiveness, angiogenesis and synthesis of two powerful endogenous anti-atherogenic and anti-thrombotic molecules such as nitric oxide (NO) and prostacyclin (PGI2). It is likely that vascular effects of HDL-S1P are regulated by the local expression of S1P receptors. Five G protein-coupled receptors (S1P1 to S1P5), with differential expression patterns and dissimilar coupling mechanism to G protein subunits, have been identified in the vasculature. This review is focused on the central role of S1P as a bioactive component that confers vasculoprotective properties to HDL by eliciting a wide range of biological responses on endothelial and smooth muscle cells largely dependent on the up-regulation of NO and prostacyclin.


Author(s):  
Davide Calebiro ◽  
Zsombor Koszegi ◽  
Yann Lanoiselée ◽  
Tamara Miljus ◽  
Shannon L O'Brien

G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.


VASA ◽  
2014 ◽  
Vol 43 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Yiqiang Zhan ◽  
Jinming Yu ◽  
Rongjing Ding ◽  
Yihong Sun ◽  
Dayi Hu

Background: The associations of triglyceride (TG) to high-density lipoprotein cholesterol ratio (HDL‑C) and total cholesterol (TC) to HDL‑C ratio and low ankle brachial index (ABI) were seldom investigated. Patients and methods: A population based cross-sectional survey was conducted and 2982 participants 60 years and over were recruited. TG, TC, HDL‑C, and low-density lipoprotein cholesterol (LDL-C) were assessed in all participants. Low ABI was defined as ABI ≤ 0.9 in either leg. Multiple logistic regression models were applied to study the association between TG/HDL‑C ratio, TC/HDL‑C ratio and low ABI. Results: The TG/HDL‑C ratios for those with ABI > 0.9 and ABI ≤ 0.9 were 1.28 ± 1.20 and 1.48 ± 1.13 (P < 0.0001), while the TC/HDL‑C ratios were 3.96 ± 1.09 and 4.32 ± 1.15 (P < 0.0001), respectively. After adjusting for age, gender, body mass index, obesity, current drinking, physical activity, hypertension, diabetes, lipid-lowering drugs, and cardiovascular disease history, the odds ratios (ORs) with 95 % confidence intervals (CIs) of low ABI for TG/HDL‑C ratio and TC/HDL‑C ratio were 1.10 (0.96, 1.26) and 1.34 (1.14, 1.59) in non-smokers. When TC was further adjusted, the ORs (95 % CIs) were 1.40 (0.79, 2.52) and 1.53 (1.21, 1.93) for TG/HDL‑C ratio and TC/HDL‑C ratio, respectively. Non-linear relationships were detected between TG/HDL‑C ratio and TC/HDL‑C ratio and low ABI in both smokers and non-smokers. Conclusions: TC/HDL‑C ratio was significantly associated with low ABI in non-smokers and the association was independent of TC, TG, HDL‑C, and LDL-C. TC/HDL‑C might be considered as a potential biomarker for early peripheral arterial disease screening.


Sign in / Sign up

Export Citation Format

Share Document