scholarly journals Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift

2011 ◽  
Vol 108 (25) ◽  
pp. 10231-10236 ◽  
Author(s):  
P. Shah ◽  
M. A. Gilchrist
Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1460
Author(s):  
Irene Hoxie ◽  
John J. Dennehy

Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.


2019 ◽  
Author(s):  
ying wang ◽  
Lin Yao ◽  
Jinfeng Fan ◽  
Xueying Zhang ◽  
Changhong Guo ◽  
...  

Abstract Background: Codon usage pattern is an important evolutionary feature in genomes widely observed in many organisms. Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: a germline micronucleus and a vegetative macronucleus. Analysis of codon usage pattern of S. lemnae macronucleus genome helps in understanding evolution at molecular level and acquires significance in mRNA translation, design of transgenic and new gene discovery. Results: The codons of the macronucleus genome sequence of S. lemnae were analyzed and 20,750 coding sequences (CDS) were screened. The overall codon usage of S. lemnae is similar and slightly biased. The value of effective number of codons (ENC) showed that the overall extent of codon usage bias in S. lemnae is relatively high. Nucleotide analysis showed that the overall codon usage is biased toward A- and U-ending codons. The phylogenetic analysis indicated that ciliate is independent evolutionary origins from a common ancestor. The RSCU analysis showed that the codon usage pattern of S. lemnae is more similar to that of Thtrahymana thermophila and Paramecium caudatum . Correlation analysis, ENC-GC 3S plot, and PR2 plot indicated that the codon usage patterns of S. lemnae are influenced by both mutational pressure and natural selection, neutrality plot analysis showed that those two factors play major roles. C onclusions : Codon usage patterns in eukaryotes are not determined by translational efficiency, but also are determined by the genome. Our study is the first attempt to evaluate the codon usage pattern of S.lemnae macronucleus genome to better understand the evolutionary changes. These results built the base for further research on the molecular evolution of S. lemnae .


2015 ◽  
Author(s):  
Sinan Uğur Umu ◽  
Anthony M. Poole ◽  
Renwick C. J. Dobson ◽  
Paul P. Gardner

AbstractA critical assumption of gene expression analysis is that mRNA abundances broadly correlate with protein abundance, but these two are often imperfectly correlated. Some of the discrepancy can be accounted for by two important mRNA features: codon usage and mRNA secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide evidence that avoidance increases translational efficiency. We also demonstrate a strong selection for avoidance of stochastic mRNA:ncRNA interactions across prokaryotes, and that these have a greater impact on protein abundance than mRNA structure or codon usage. By generating synonymously variant green fluorescent protein (GFP) mRNAs with different potential for mRNA:ncRNA interactions, we demonstrate that GFP levels correlate well with interaction avoidance. Therefore, taking stochastic mRNA:ncRNA interactions into account enables precise modulation of protein abundance.


2019 ◽  
Author(s):  
Abigail L. Labella ◽  
Dana A. Opulente ◽  
Jacob L. Steenwyk ◽  
Chris Todd Hittinger ◽  
Antonis Rokas

AbstractVariation in synonymous codon usage is abundant across multiple levels of organization: between codons of an amino acid, between genes in a genome, and between genomes of different species. It is now well understood that variation in synonymous codon usage is influenced by mutational bias coupled with both natural selection for translational efficiency and genetic drift, but how these processes shape patterns of codon usage bias across entire lineages remains unexplored. To address this question, we used a rich genomic data set of 327 species that covers nearly one third of the known biodiversity of the budding yeast subphylum Saccharomycotina. We found that, while genome-wide relative synonymous codon usage (RSCU) for all codons was highly correlated with the GC content of the third codon position (GC3), the usage of codons for the amino acids proline, arginine, and glycine was inconsistent with the neutral expectation where mutational bias coupled with genetic drift drive codon usage. Examination between genes’ effective numbers of codons and their GC3 contents in individual genomes revealed that nearly a quarter of genes (381,174/1,683,203; 23%), as well as most genomes (308/327; 94%), significantly deviate from the neutral expectation. Finally, by evaluating the imprint of translational selection on codon usage, measured as the degree to which genes’ adaptiveness to the tRNA pool were correlated with selective pressure, we show that translational selection is widespread in budding yeast genomes (264/327; 81%). These results suggest that the contribution of translational selection and drift to patterns of synonymous codon usage across budding yeasts varies across codons, genes, and genomes; whereas drift is the primary driver of global codon usage across the subphylum, the codon bias of large numbers of genes in the majority of genomes is influenced by translational selection.Lay Summary / Significance statementSynonymous mutations in genes have no effect on the encoded proteins and were once thought to be evolutionarily neutral. By examining codon usage bias across codons, genes, and genomes of 327 species in the budding yeast subphylum, we show that synonymous codon usage is shaped by both neutral processes and selection for translational efficiency. Specifically, whereas codon usage bias for most codons appears to be strongly associated with mutational bias and largely driven by genetic drift across the entire subphylum, patterns of codon usage bias in a few codons, as well as in many genes in nearly all genomes of budding yeasts, deviate from neutral expectations. Rather, the synonymous codons used within genes in most budding yeast genomes are adapted to the tRNAs present within each genome, a result most likely due to translational selection that optimizes codons to match the tRNAs. Our results suggest that patterns of codon usage bias in budding yeasts, and perhaps more broadly in fungi and other microbial eukaryotes, are shaped by both neutral and selective processes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Sinan Uğur Umu ◽  
Anthony M Poole ◽  
Renwick CJ Dobson ◽  
Paul P Gardner

A critical assumption of gene expression analysis is that mRNA abundances broadly correlate with protein abundance, but these two are often imperfectly correlated. Some of the discrepancy can be accounted for by two important mRNA features: codon usage and mRNA secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide evidence that avoidance increases translational efficiency. We also demonstrate a strong selection for the avoidance of stochastic mRNA:ncRNA interactions across prokaryotes, and that these have a greater impact on protein abundance than mRNA structure or codon usage. By generating synonymously variant green fluorescent protein (GFP) mRNAs with different potential for mRNA:ncRNA interactions, we demonstrate that GFP levels correlate well with interaction avoidance. Therefore, taking stochastic mRNA:ncRNA interactions into account enables precise modulation of protein abundance.


2019 ◽  
Author(s):  
Ying Wang ◽  
Lin Yao ◽  
Jinfeng Fan ◽  
Xueying Zhang ◽  
Changhong Guo ◽  
...  

Abstract Background: Codon usage pattern is an important evolutionary feature in genomes widely observed in many organisms. Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: a germline micronucleus and a vegetative macronucleus. Analysis of codon usage pattern of S. lemnae macronucleus genome helps in understanding evolution at molecular level and acquires significance in mRNA translation, design of transgenic and new gene discovery. Results: The codons of the macronucleus genome sequence of S. lemnae were analyzed and 20,750 coding sequences (CDS) were screened. The overall codon usage of S. lemnae is similar and slightly biased. The value of effective number of codons (ENC) showed that the overall extent of codon usage bias in S. lemnae is relatively high. Nucleotide analysis showed that the overall codon usage is biased toward A- and U-ending codons. The phylogenetic analysis indicated that ciliate is independent evolutionary origins from a common ancestor. The RSCU analysis showed that the codon usage pattern of S. lemnae is more similar to that of Thtrahymana thermophila and Paramecium caudatum . Correlation analysis, ENC-GC 3S plot, and PR2 plot indicated that the codon usage patterns of S. lemnae are not only influenced by mutational pressure but also by natural selection, but neutrality plot analysis showed that the latter plays a major role. C onclusions : Codon usage patterns in eukaryotes are not determined by translational efficiency, but also are determined by the genome. Our study is the first attempt to evaluate the codon usage pattern of S.lemnae macronucleus genome to better understand the evolutionary changes. These results built the base for further research on the molecular evolution of S. lemnae .


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1520 ◽  
Author(s):  
Marco Gerdol ◽  
Gianluca De Moro ◽  
Paola Venier ◽  
Alberto Pallavicini

Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates.


2019 ◽  
Author(s):  
Cedric Landerer ◽  
Brian C. O’Meara ◽  
Russell Zaretzki ◽  
Michael A. Gilchrist

AbstractFor decades, codon usage has been used as a measure of adaptation for translational efficiency and translation accuracy of a gene’s coding sequence. These patterns of codon usage reflect both the selective and mutational environment in which the coding sequences evolved. Over this same period, gene transfer between lineages has become widely recognized as an important biological phenomenon. Nevertheless, most studies of codon usage implicitly assume that all genes within a genome evolved under the same selective and mutational environment, an assumption violated when introgression occurs. In order to better understand the effects of introgression on codon usage patterns and vice versa, we examine the patterns of codon usage in Lachancea kluyveri, a yeast which has experienced a large introgression. We quantify the effects of mutation bias and selection for translation efficiency on the codon usage pattern of the endogenous and introgressed exogenous genes using a Bayesian mixture model, ROC SEMPPR, which is built on mechanistic assumptions about protein synthesis and grounded in population genetics.We find substantial differences in codon usage between the endogenous and exogenous genes, and show that these differences can be largely attributed to differences in mutation bias favoring A/T ending codons in the endogenous genes while favoring C/G ending codons in the exogenous genes. Recognizing the two different signatures of mutation bias and selection improves our ability to predict protein synthesis rate by 42% and allowed us to accurately assess the decaying signal of endogenous codon mutation and preferences. In addition, using our estimates of mutation bias and selection, we identify Eremothecium gossypii as the closest relative to the exogenous genes, providing an alternative hypothesis about the origin of the exogenous genes, estimate that the introgression occurred ∼ 6 × 108 generation ago, and estimate its historic and current selection against mismatched codon usage.Our work illustrates how mechanistic, population genetic models like ROC SEMPPR can separate the effects of mutation and selection on codon usage and provide quantitative estimates from sequence data.


2021 ◽  
Author(s):  
Irene Hoxie ◽  
John J Dennehy

Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortant-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different treespaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable treespaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the least conservation by host species. Bayesian skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to common host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.


Sign in / Sign up

Export Citation Format

Share Document