scholarly journals Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production

2013 ◽  
Vol 110 (18) ◽  
pp. 7131-7135 ◽  
Author(s):  
V. S. Lin ◽  
A. R. Lippert ◽  
C. J. Chang
2012 ◽  
Vol 14 (8) ◽  
pp. 2184-2187 ◽  
Author(s):  
Chunrong Liu ◽  
Bo Peng ◽  
Sheng Li ◽  
Chung-Min Park ◽  
A. Richard Whorton ◽  
...  

2018 ◽  
Vol 6 ◽  
Author(s):  
Xuefang Shang ◽  
Jie Li ◽  
Yaqian Feng ◽  
Hongli Chen ◽  
Wei Guo ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2288-2298 ◽  
Author(s):  
Thomas J. Lechuga ◽  
Hong-hai Zhang ◽  
Lili Sheibani ◽  
Muntarin Karim ◽  
Jason Jia ◽  
...  

Abstract Estrogens dramatically dilate numerous vascular beds with the greatest response in the uterus. Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger, which is synthesized from L-cysteine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). We hypothesized that estrogen replacement therapy (ERT) selectively stimulates H2S biosynthesis in uterine artery (UA) and other systemic arteries. Intact and endothelium-denuded UA, mesenteric artery (MA), and carotid artery (CA) were obtained from ovariectomized nonpregnant ewes (n = 5/group) receiving vehicle or estradiol-17β replacement therapy (ERT). Total RNA and protein were extracted for measuring CBS and CSE, and H2S production was determined by the methylene blue assay. Paraffin-embedded UA rings were used to localize CBS and CSE proteins by immunofluorescence microscopy. ERT significantly stimulated CBS mRNA and protein without altering CSE mRNA or protein in intact and denuded UA. Quantitative immunofluorescence microscopic analyses showed CBS and CSE protein localization in endothelium and smooth muscle and confirmed that ERT stimulated CBS but not CSE protein expression in UA endothelium and smooth muscle. ERT also stimulated CBS, but not CSE, mRNA and protein expression in intact and denuded MA but not CA in ovariectomized ewes. Concomitantly, ERT stimulated UA and MA but not CA H2S production. ERT-stimulated UA H2S production was completely blocked by a specific CBS but not CSE inhibitor. Thus, ERT selectively stimulates UA and MA but not CA H2S biosynthesis by specifically up-regulating CBS expression, implicating a role of H2S in estrogen-induced vasodilation and postmenopausal women's health.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6542
Author(s):  
Byung-Kyu Ahn ◽  
Tae-Hoon Kim ◽  
Jiyun Seon ◽  
Seung-Kyun Park ◽  
Yeo-Myeong Yun

Direct addition of sulfur-reducing agents during anaerobic digestion (AD) is very effective in controlling hydrogen sulfide (H2S) content in biogas, although one major problem is the high operational cost due to the large amount of chemicals used. The objective of this study was to remove H2S using a waste mill scale (MS) as a sulfur-reducing agent. To evaluate its feasibility, MS was added to AD fed with food waste (FW) at concentrations between 0 and 160 g MS/kg total chemical oxygen demand (TCOD) during the batch test, and the experimental results were compared to those of the batch test with the addition of iron chloride (FeCl3). Both FeCl3 and MS played an important role as electro-conductive materials in improving methane productivity by promoting direct interspecies electron transfer. An increase in H2S removal efficiency was observed with increases in both materials. In total, 30%, 60%, and 90% of H2S production based on the maximum sulfur in the form of H2S (control) was 3.7, 9.4, and 23.8 g FeCl3/kg TCOD and 13.3, 34.1, and 86.2 g MS/kg TCOD, respectively. This finding indicates that MS can be used as a sulfur-reducing agent substitute for H2S removal in AD fed with FW.


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jae-Hyung Kim ◽  
Young-Ju Lee ◽  
Yong-Jin Ahn ◽  
Minyoung Kim ◽  
Gi-Ja Lee

In this study, a paper-integrated analytical device that combined a paper-based colorimetric assay with a paper-based cell culture platform was developed for the in situ detection of hydrogen sulfide (H2S) in three-dimensional (3D)-cultured, live prostate cancer cells. Two kinds of paper substrates were fabricated using a simple wax-printing methodology to form the cell culture and detection zones, respectively. LNCaP cells were seeded directly on the paper substrate and grown in the paper-integrated analytical device. The cell viability and H2S production of LNCaP cells were assessed using a simple water-soluble tetrazolium salt colorimetric assay and H2S-sensing paper, respectively. The H2S-sensing paper showed good sensitivity (sensitivity: 6.12 blue channel intensity/μM H2S, R2 = 0.994) and a limit of quantification of 1.08 μM. As a result, we successfully measured changes in endogenous H2S production in 3D-cultured, live LNCaP cells within the paper-integrated analytical device while varying the duration of incubation and substrate concentration (L-cysteine). This paper-integrated analytical device can provide a simple and effective method to investigate H2S signaling pathways and drug screening in a 3D culture model.


Sign in / Sign up

Export Citation Format

Share Document